Skip to main content

Biologically Active Lipids in Vascular Biology

  • Chapter
  • First Online:
Fundamentals of Vascular Biology

Part of the book series: Learning Materials in Biosciences ((LMB))

Abstract

Biologically active lipids play numerous important roles in controlling vascular functions both in physiological and pathological settings. While enzymatically formed bioactive lipids mainly control physiological reactions involved in constriction and relaxation, as well as in providing an anticoagulant vessel surface, nonenzymatic lipid oxidation products have largely been implicated in controlling and driving a variety of blood vessel pathologies. Bioactive lipids are sensed by all cell types in the vascular wall. A variety of lipids control pro- and anti-inflammatory responses, endothelial barrier function, migration and phenotypic switching in smooth muscle cells, and macrophage phenotypic polarization and function. The biological effects of enzymatically formed bioactive lipids are mainly mediated via G protein-coupled receptors. Depending on specific receptor recognition, S1P and oxysterols can elicit either pro-inflammatory or anti-inflammatory effects. On the other hand, lipid oxidation products are recognized by two classes of less specific receptors called pattern recognition receptors and scavenger receptors. They may also directly modify proteins and enzymes thereby affecting a variety of vascular functions and contribute to inflammatory responses of the vessel wall, sometimes involving activation of inflammasomes. Oxidized lipids present in oxidized lipoproteins (oxLDL) enhance the formation of foam cells (i.e., lipid-laden macrophages). These oxidized lipids induce a specific stress response in macrophages that involves Nrf2-dependent upregulation of antioxidant and detoxifying enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel-Latif A, Heron PM, Morris AJ, Smyth SS. Lysophospholipids in coronary artery and chronic ischemic heart disease. Curr Opin Lipidol. 2015;26:432–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Adamson S, Leitinger N. Phenotypic modulation of macrophages in response to plaque lipids. Curr Opin Lipidol. 2011;22:335–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Afonyushkin T, Oskolkova OV, Philippova M, Resink TJ, Erne P, Binder BR, Bochkov VN. Oxidized phospholipids regulate expression of ATF4 and VEGF in endothelial cells via NRF2-dependent mechanism: novel point of convergence between electrophilic and unfolded protein stress pathways. Arterioscler Thromb Vasc Biol. 2010;30:1007–13.

    Article  CAS  PubMed  Google Scholar 

  4. Albert RK, Greenberg GM, Henderson W. Leukotriene C4 and D4 increase pulmonary vascular permeability in excised rabbit lungs. Chest. 1983;83:85S–6S.

    Article  CAS  PubMed  Google Scholar 

  5. Arita M, Ohira T, Sun YP, Elangovan S, Chiang N, Serhan CN. Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation. J Immunol. 2007;178:3912–7.

    Article  CAS  PubMed  Google Scholar 

  6. Avendano MS, Garcia-Redondo AB, Zalba G, Gonzalez-Amor M, Aguado A, Martinez-Revelles S, Beltran LM, Camacho M, Cachofeiro V, Alonso MJ, et al. mPGES-1 (microsomal prostaglandin E synthase-1) mediates vascular dysfunction in hypertension through oxidative stress. Hypertension. 2018;72:492–502.

    Article  CAS  PubMed  Google Scholar 

  7. Back M, Weber C, Lutgens E. Regulation of atherosclerotic plaque inflammation. J Intern Med. 2015;278:462–82.

    Article  CAS  PubMed  Google Scholar 

  8. Benndorf RA, Schwedhelm E, Gnann A, Taheri R, Kom G, Didie M, Steenpass A, Ergun S, Boger RH. Isoprostanes inhibit vascular endothelial growth factor-induced endothelial cell migration, tube formation, and cardiac vessel sprouting in vitro, as well as angiogenesis in vivo via activation of the thromboxane A(2) receptor: a potential link between oxidative stress and impaired angiogenesis. Circ Res. 2008;103:1037–46.

    Article  CAS  PubMed  Google Scholar 

  9. Berger M, Wraith K, Woodward C, Aburima A, Raslan Z, Hindle MS, Moellmann J, Febbraio M, Naseem KM. Dyslipidemia-associated atherogenic oxidized lipids induce platelet hyperactivity through phospholipase Cγ2-dependent reactive oxygen species generation. Platelets. 2018:1–6.

    Google Scholar 

  10. Bergmark C, Dewan A, Orsoni A, Merki E, Miller ER, Shin MJ, Binder CJ, Horkko S, Krauss RM, Chapman MJ, et al. A novel function of lipoprotein [a] as a preferential carrier of oxidized phospholipids in human plasma. J Lipid Res. 2008;49:2230–9.

    Article  CAS  PubMed  Google Scholar 

  11. Berliner JA, Leitinger N, Tsimikas S. The role of oxidized phospholipids in atherosclerosis. J Lipid Res. 2009;50(Suppl):S207–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Bertoia ML, Pai JK, Lee JH, Taleb A, Joosten MM, Mittleman MA, Yang X, Witztum JL, Rimm EB, Tsimikas S, et al. Oxidation-specific biomarkers and risk of peripheral artery disease. J Am Coll Cardiol. 2013;61:2169–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Birukov KG, Bochkov VN, Birukova AA, Kawkitinarong K, Rios A, Leitner A, Verin AD, Bokoch GM, Leitinger N, Garcia JG. Epoxycyclopentenone-containing oxidized phospholipids restore endothelial barrier function via Cdc42 and Rac. Circ Res. 2004;95:892–901.

    Article  CAS  PubMed  Google Scholar 

  14. Bisgaard H, Kristensen JK. Effects of synthetic leukotriene D-4 on the local regulation of blood flow in human subcutaneous tissue. Prostaglandins. 1985;29:155–9.

    Article  CAS  PubMed  Google Scholar 

  15. Bisgaard H, Kristensen J, Sondergaard J. The effect of leukotriene C4 and D4 on cutaneous blood flow in humans. Prostaglandins. 1982;23:797–801.

    Article  CAS  PubMed  Google Scholar 

  16. Biswas S, Xin L, Panigrahi S, Zimman A, Wang H, Yakubenko VP, Byzova TV, Salomon RG, Podrez EA. Novel phosphatidylethanolamine derivatives accumulate in circulation in hyperlipidemic ApoE−/− mice and activate platelets via TLR2. Blood. 2016;127:2618–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–7.

    Article  CAS  PubMed  Google Scholar 

  18. Blocher R, Wagner KM, Gopireddy RR, Harris TR, Wu H, Barnych B, Hwang SH, Xiang YK, Proschak E, Morisseau C, et al. Orally available soluble epoxide hydrolase/phosphodiesterase 4 dual inhibitor treats inflammatory pain. J Med Chem. 2018;61:3541–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bochkov VN, Leitinger N. Anti-inflammatory properties of lipid oxidation products. J Mol Med. 2003;81:613–26.

    Article  CAS  PubMed  Google Scholar 

  20. Bochkov VN, Oskolkova OV, Birukov KG, Levonen AL, Binder CJ, Stockl J. Generation and biological activities of oxidized phospholipids. Antioxid Redox Signal. 2010;12:1009–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bohr S, Patel SJ, Sarin D, Irimia D, Yarmush ML, Berthiaume F. Resolvin D2 prevents secondary thrombosis and necrosis in a mouse burn wound model. Wound Repair Regen. 2013;21:35–43.

    Article  PubMed  Google Scholar 

  22. Boullier A, Li Y, Quehenberger O, Palinski W, Tabas I, Witztum JL, Miller YI. Minimally oxidized LDL offsets the apoptotic effects of extensively oxidized LDL and free cholesterol in macrophages. Arterioscler Thromb Vasc Biol. 2006;26:1169–76.

    Article  CAS  PubMed  Google Scholar 

  23. Bradley MN, Hong C, Chen M, Joseph SB, Wilpitz DC, Wang X, Lusis AJ, Collins A, Hseuh WA, Collins JL, et al. Ligand activation of LXR beta reverses atherosclerosis and cellular cholesterol overload in mice lacking LXR alpha and apoE. J Clin Invest. 2007;117:2337–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Breevoort SR, Angdisen J, Schulman IG. Macrophage-independent regulation of reverse cholesterol transport by liver X receptors. Arterioscler Thromb Vasc Biol. 2014;34:1650–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brugger B, Erben G, Sandhoff R, Wieland FT, Lehmann WD. Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc Natl Acad Sci U S A. 1997;94:2339–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Byun YS, Lee JH, Arsenault BJ, Yang X, Bao W, DeMicco D, Laskey R, Witztum JL, Tsimikas S, TNT Trial Investigators. Relationship of oxidized phospholipids on apolipoprotein B-100 to cardiovascular outcomes in patients treated with intensive versus moderate atorvastatin therapy: the TNT trial. J Am Coll Cardiol. 2015;65:1286–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Camm J, Hla T, Bakshi R, Brinkmann V. Cardiac and vascular effects of fingolimod: mechanistic basis and clinical implications. Am Heart J. 2014;168:632–44.

    Article  CAS  PubMed  Google Scholar 

  28. Capoulade R, Chan KL, Yeang C, Mathieu P, Bosse Y, Dumesnil JG, Tam JW, Teo KK, Mahmut A, Yang X, et al. Oxidized phospholipids, lipoprotein(a), and progression of calcific aortic valve stenosis. J Am Coll Cardiol. 2015;66:1236–46.

    Article  CAS  PubMed  Google Scholar 

  29. Cazade M, Bidaud I, Hansen PB, Lory P, Chemin J. 5,6-EET potently inhibits T-type calcium channels: implication in the regulation of the vascular tone. Pflugers Arch: Eur J Physiol. 2014;466:1759–68.

    Article  CAS  Google Scholar 

  30. Chang MK, Binder CJ, Miller YI, Subbanagounder G, Silverman GJ, Berliner JA, Witztum JL. Apoptotic cells with oxidation-specific epitopes are immunogenic and proinflammatory. J Exp Med. 2004;200:1359–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cherepanova OA, Pidkovka NA, Sarmento OF, Yoshida T, Gan Q, Adiguzel E, Bendeck MP, Berliner J, Leitinger N, Owens GK. Oxidized phospholipids induce type VIII collagen expression and vascular smooth muscle cell migration. Circ Res. 2009;104:609–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dalli J, Zhu M, Vlasenko NA, Deng B, Haeggstrom JZ, Petasis NA, Serhan CN. The novel 13S,14S-epoxy-maresin is converted by human macrophages to maresin 1 (MaR1), inhibits leukotriene A4 hydrolase (LTA4H), and shifts macrophage phenotype. FASEB J. 2013;27:2573–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Davies SS, Roberts LJ 2nd. F2-isoprostanes as an indicator and risk factor for coronary heart disease. Free Radic Biol Med. 2011;50:559–66.

    Article  CAS  PubMed  Google Scholar 

  34. Deng Y, Theken KN, Lee CR. Cytochrome P450 epoxygenases, soluble epoxide hydrolase, and the regulation of cardiovascular inflammation. J Mol Cell Cardiol. 2010;48:331–41.

    Article  CAS  PubMed  Google Scholar 

  35. Deng Y, Edin ML, Theken KN, Schuck RN, Flake GP, Kannon MA, DeGraff LM, Lih FB, Foley J, Bradbury JA, et al. Endothelial CYP epoxygenase overexpression and soluble epoxide hydrolase disruption attenuate acute vascular inflammatory responses in mice. FASEB J. 2011;25:703–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Deng B, Wang CW, Arnardottir HH, Li Y, Cheng CY, Dalli J, Serhan CN. Maresin biosynthesis and identification of maresin 2, a new anti-inflammatory and pro-resolving mediator from human macrophages. PLoS One. 2014;9:e102362.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Dona M, Fredman G, Schwab JM, Chiang N, Arita M, Goodarzi A, Cheng G, von Andrian UH, Serhan CN. Resolvin E1, an EPA-derived mediator in whole blood, selectively counterregulates leukocytes and platelets. Blood. 2008;112:848–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, Abela GS, Franchi L, Nunez G, Schnurr M, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464:1357–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Elajami TK, Colas RA, Dalli J, Chiang N, Serhan CN, Welty FK. Specialized proresolving lipid mediators in patients with coronary artery disease and their potential for clot remodeling. FASEB J. 2016;30:2792–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Eskildsen MP, Hansen PB, Stubbe J, Toft A, Walter S, Marcussen N, Rasmussen LM, Vanhoutte PM, Jensen BL. Prostaglandin I2 and prostaglandin E2 modulate human intrarenal artery contractility through prostaglandin E2-EP4, prostacyclin-IP, and thromboxane A2-TP receptors. Hypertension. 2014;64:551–6.

    Article  CAS  PubMed  Google Scholar 

  41. Esterbauer H, Jurgens G, Quehenberger O, Koller E. Autoxidation of human low density lipoprotein: loss of polyunsaturated fatty acids and vitamin E and generation of aldehydes. J Lipid Res. 1987;28:495–509.

    CAS  PubMed  Google Scholar 

  42. Fan F, Roman RJ. Effect of cytochrome P450 metabolites of arachidonic acid in nephrology. J Am Soc Nephrol: JASN. 2017;28:2845–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Feddersen CO, Mathias M, Murphy RC, Reeves JT, Voelkel NF. Leukotriene E4 causes pulmonary vasoconstriction, not inhibited by meclofenamate. Prostaglandins. 1983;26:869–83.

    Article  CAS  PubMed  Google Scholar 

  44. Fleming I. The factor in EDHF: cytochrome P450 derived lipid mediators and vascular signaling. Vasc Pharmacol. 2016;86:31–40.

    Article  CAS  Google Scholar 

  45. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226:497–509.

    CAS  PubMed  Google Scholar 

  46. Fraley AE, Schwartz GG, Olsson AG, Kinlay S, Szarek M, Rifai N, Libby P, Ganz P, Witztum JL, Tsimikas S, et al. Relationship of oxidized phospholipids and biomarkers of oxidized low-density lipoprotein with cardiovascular risk factors, inflammatory biomarkers, and effect of statin therapy in patients with acute coronary syndromes: results from the MIRACL (Myocardial Ischemia Reduction With Aggressive Cholesterol Lowering) trial. J Am Coll Cardiol. 2009;53:2186–96.

    Article  CAS  PubMed  Google Scholar 

  47. Freeman CP, West D. Complete separation of lipid classes on a single thin-layer plate. J Lipid Res. 1966;7:324–7.

    CAS  PubMed  Google Scholar 

  48. Friedli O, Freigang S. Cyclopentenone-containing oxidized phospholipids and their isoprostanes as pro-resolving mediators of inflammation. Biochim Biophys Acta. 2017;1862(4):382–92.

    Article  CAS  Google Scholar 

  49. Fukunaga M, Takahashi K, Badr KF. Vascular smooth muscle actions and receptor interactions of 8-iso-prostaglandin E2, an E2-isoprostane. Biochem Biophys Res Commun. 1993;195:507–15.

    Article  CAS  PubMed  Google Scholar 

  50. Glass CK, Witztum JL. Atherosclerosis. The road ahead. Cell. 2001;104:503–16.

    Article  CAS  PubMed  Google Scholar 

  51. Gryglewski RJ. Prostacyclin among prostanoids. Pharmacol Rep. 2008;60:3–11.

    CAS  PubMed  Google Scholar 

  52. Hammock BD, Wagner K, Inceoglu B. The soluble epoxide hydrolase as a pharmaceutical target for pain management. Pain Manag. 2011;1:383–6.

    Article  PubMed  Google Scholar 

  53. Han X, Gross RW. Structural determination of picomole amounts of phospholipids via electrospray ionization tandem mass spectrometry. J Am Soc Mass Spectrom. 1995;6:1202–10.

    Article  CAS  PubMed  Google Scholar 

  54. Han X, Gross RW. Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev. 2005a;24:367–412.

    Article  CAS  PubMed  Google Scholar 

  55. Han X, Gross RW. Shotgun lipidomics: multidimensional MS analysis of cellular lipidomes. Expert Rev Proteomics. 2005b;2:253–64.

    Article  CAS  PubMed  Google Scholar 

  56. Hart CM, Karman RJ, Blackburn TL, Gupta MP, Garcia JG, Mohler ER 3rd. Role of 8-epi PGF2alpha, 8-isoprostane, in H2O2-induced derangements of pulmonary artery endothelial cell barrier function. Prostaglandins Leukot Essent Fatty Acids. 1998;58:9–16.

    Article  CAS  PubMed  Google Scholar 

  57. Hisano Y, Hla T. Bioactive lysolipids in cancer and angiogenesis. Pharmacol Ther. 2018;193:91–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Hitzel J, Lee E, Zhang Y, Bibli SI, Li X, Zukunft S, Pfluger B, Hu J, Schurmann C, Vasconez AE, et al. Oxidized phospholipids regulate amino acid metabolism through MTHFD2 to facilitate nucleotide release in endothelial cells. Nat Commun. 2018;9:2292.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Ho KJ, Spite M, Owens CD, Lancero H, Kroemer AH, Pande R, Creager MA, Serhan CN, Conte MS. Aspirin-triggered lipoxin and resolvin E1 modulate vascular smooth muscle phenotype and correlate with peripheral atherosclerosis. Am J Pathol. 2010;177:2116–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Holland WL, Summers SA. Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism. Endocr Rev. 2008;29:381–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hong S, Gronert K, Devchand PR, Moussignac RL, Serhan CN. Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. J Biol Chem. 2003;278:14677–87.

    Article  CAS  PubMed  Google Scholar 

  62. Hoopes SL, Garcia V, Edin ML, Schwartzman ML, Zeldin DC. Vascular actions of 20-HETE. Prostaglandins Other Lipid Mediat. 2015;120:9–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hou X, Roberts LJ 2nd, Gobeil F Jr, Taber D, Kanai K, Abran D, Brault S, Checchin D, Sennlaub F, Lachapelle P, et al. Isomer-specific contractile effects of a series of synthetic f2-isoprostanes on retinal and cerebral microvasculature. Free Radic Biol Med. 2004;36:163–72.

    Article  CAS  PubMed  Google Scholar 

  64. Hu J, Dziumbla S, Lin J, Bibli SI, Zukunft S, de Mos J, Awwad K, Fromel T, Jungmann A, Devraj K, et al. Inhibition of soluble epoxide hydrolase prevents diabetic retinopathy. Nature. 2017;552:248–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Huber J, Vales A, Mitulovic G, Blumer M, Schmid R, Witztum JL, Binder BR, Leitinger N. Oxidized membrane vesicles and blebs from apoptotic cells contain biologically active oxidized phospholipids that induce monocyte-endothelial interactions. Arterioscler Thromb Vasc Biol. 2002;22:101–7.

    Article  CAS  PubMed  Google Scholar 

  66. Hwang SH, Wagner KM, Morisseau C, Liu JY, Dong H, Wecksler AT, Hammock BD. Synthesis and structure-activity relationship studies of urea-containing pyrazoles as dual inhibitors of cyclooxygenase-2 and soluble epoxide hydrolase. J Med Chem. 2011;54:3037–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Isobe Y, Arita M, Matsueda S, Iwamoto R, Fujihara T, Nakanishi H, Taguchi R, Masuda K, Sasaki K, Urabe D, et al. Identification and structure determination of novel anti-inflammatory mediator resolvin E3, 17,18-dihydroxyeicosapentaenoic acid. J Biol Chem. 2012;287:10525–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Joseph SB, McKilligin E, Pei L, Watson MA, Collins AR, Laffitte BA, Chen M, Noh G, Goodman J, Hagger GN, et al. Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci U S A. 2002;99:7604–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jurgens G, Hoff HF, Chisolm GM 3rd, Esterbauer H. Modification of human serum low density lipoprotein by oxidation--characterization and pathophysiological implications. Chem Phys Lipids. 1987;45:315–36.

    Article  CAS  PubMed  Google Scholar 

  70. Kamstrup PR, Hung MY, Witztum JL, Tsimikas S, Nordestgaard BG. Oxidized phospholipids and risk of calcific aortic valve disease: the Copenhagen General Population Study. Arterioscler Thromb Vasc Biol. 2017;37:1570–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Karki P, Birukov KG. Lipid mediators in the regulation of endothelial barriers. Tissue Barriers. 2018;6:e1385573.

    Article  PubMed  CAS  Google Scholar 

  72. Ke Y, Zebda N, Oskolkova O, Afonyushkin T, Berdyshev E, Tian Y, Meng F, Sarich N, Bochkov VN, Wang JM, et al. Anti-inflammatory effects of OxPAPC involve endothelial cell-mediated generation of LXA4. Circ Res. 2017;121:244–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Keul P, Lucke S, von Wnuck Lipinski K, Bode C, Graler M, Heusch G, Levkau B. Sphingosine-1-phosphate receptor 3 promotes recruitment of monocyte/macrophages in inflammation and atherosclerosis. Circ Res. 2011;108:314–23.

    Article  CAS  PubMed  Google Scholar 

  74. Kiechl S, Willeit J, Mayr M, Viehweider B, Oberhollenzer M, Kronenberg F, Wiedermann CJ, Oberthaler S, Xu Q, Witztum JL, et al. Oxidized phospholipids, lipoprotein(a), lipoprotein-associated phospholipase A2 activity, and 10-year cardiovascular outcomes: prospective results from the Bruneck study. Arterioscler Thromb Vasc Biol. 2007;27:1788–95.

    Article  CAS  PubMed  Google Scholar 

  75. Kobayasi R, Akamine EH, Davel AP, Rodrigues MA, Carvalho CR, Rossoni LV. Oxidative stress and inflammatory mediators contribute to endothelial dysfunction in high-fat diet-induced obesity in mice. J Hypertens. 2010;28:2111–9.

    Article  CAS  PubMed  Google Scholar 

  76. Kuosmanen SM, Kansanen E, Kaikkonen MU, Sihvola V, Pulkkinen K, Jyrkkanen HK, Tuoresmaki P, Hartikainen J, Hippelainen M, Kokki H, et al. NRF2 regulates endothelial glycolysis and proliferation with miR-93 and mediates the effects of oxidized phospholipids on endothelial activation. Nucleic Acids Res. 2018;46:1124–38.

    Article  CAS  PubMed  Google Scholar 

  77. Kzhyshkowska J, Neyen C, Gordon S. Role of macrophage scavenger receptors in atherosclerosis. Immunobiology. 2012;217:492–502.

    Article  CAS  PubMed  Google Scholar 

  78. Lang J, Celotto C, Esterbauer H. Quantitative determination of the lipid peroxidation product 4-hydroxynonenal by high-performance liquid chromatography. Anal Biochem. 1985;150:369–78.

    Article  CAS  PubMed  Google Scholar 

  79. Lauder SN, Allen-Redpath K, Slatter DA, Aldrovandi M, O’Connor A, Farewell D, Percy CL, Molhoek JE, Rannikko S, Tyrrell VJ, et al. Networks of enzymatically oxidized membrane lipids support calcium-dependent coagulation factor binding to maintain hemostasis. Sci Signal. 2017;10(507):eaan2787.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Leitinger N, Tyner TR, Oslund L, Rizza C, Subbanagounder G, Lee H, Shih PT, Mackman N, Tigyi G, Territo MC, et al. Structurally similar oxidized phospholipids differentially regulate endothelial binding of monocytes and neutrophils. Proc Natl Acad Sci U S A. 1999;96:12010–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ley K, Miller YI, Hedrick CC. Monocyte and macrophage dynamics during atherogenesis. Arterioscler Thromb Vasc Biol. 2011;31:1506–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Li R, Mouillesseaux KP, Montoya D, Cruz D, Gharavi N, Dun M, Koroniak L, Berliner JA. Identification of prostaglandin E2 receptor subtype 2 as a receptor activated by OxPAPC. Circ Res. 2006;98:642–50.

    Article  CAS  PubMed  Google Scholar 

  83. Limbu R, Cottrell GS, McNeish AJ. Characterisation of the vasodilation effects of DHA and EPA, n-3 PUFAs (fish oils), in rat aorta and mesenteric resistance arteries. PLoS One. 2018;13:e0192484.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Linton MF, Yancey PG, Davies SS, Jerome WGJ, Linton EF, Vickers KC. The role of lipids and lipoproteins in atherosclerosis. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, Koch C, Korbonits M, McLachlan R, New M, et al., editors. Endotext. South Dartmouth: MDText.com, Inc; 2000.

    Google Scholar 

  85. Liu M, Boussetta T, Makni-Maalej K, Fay M, Driss F, El-Benna J, Lagarde M, Guichardant M. Protectin DX, a double lipoxygenase product of DHA, inhibits both ROS production in human neutrophils and cyclooxygenase activities. Lipids. 2014;49:49–57.

    Article  PubMed  CAS  Google Scholar 

  86. Mahajan-Thakur S, Bohm A, Jedlitschky G, Schror K, Rauch BH. Sphingosine-1-phosphate and its receptors: a mutual link between blood coagulation and inflammation. Mediat Inflamm. 2015;2015:831059.

    Article  CAS  Google Scholar 

  87. Malleier JM, Oskolkova O, Bochkov V, Jerabek I, Sokolikova B, Perkmann T, Breuss J, Binder BR, Geiger M. Regulation of protein C inhibitor (PCI) activity by specific oxidized and negatively charged phospholipids. Blood. 2007;109:4769–76.

    Article  CAS  PubMed  Google Scholar 

  88. Malmsten CL, Palmblad J, Uden AM, Radmark O, Engstedt L, Samuelsson B. Leukotriene B4: a highly potent and stereospecific factor stimulating migration of polymorphonuclear leukocytes. Acta Physiol Scand. 1980;110:449–51.

    Article  CAS  PubMed  Google Scholar 

  89. Marathe GK, Davies SS, Harrison KA, Silva AR, Murphy RC, Castro-Faria-Neto H, Prescott SM, Zimmerman GA, McIntyre TM. Inflammatory platelet-activating factor-like phospholipids in oxidized low density lipoproteins are fragmented alkyl phosphatidylcholines. J Biol Chem. 1999;274:28395–404.

    Article  CAS  PubMed  Google Scholar 

  90. Marathe GK, Zimmerman GA, Prescott SM, McIntyre TM. Activation of vascular cells by PAF-like lipids in oxidized LDL. Vasc Pharmacol. 2002;38:193–200.

    Article  CAS  Google Scholar 

  91. Mauerhofer C, Philippova M, Oskolkova OV, Bochkov VN. Hormetic and anti-inflammatory properties of oxidized phospholipids. Mol Asp Med. 2016;49:78–90.

    Article  CAS  Google Scholar 

  92. Merched AJ, Ko K, Gotlinger KH, Serhan CN, Chan L. Atherosclerosis: evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators. FASEB J. 2008;22:3595–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Merki E, Graham M, Taleb A, Leibundgut G, Yang X, Miller ER, Fu W, Mullick AE, Lee R, Willeit P, et al. Antisense oligonucleotide lowers plasma levels of apolipoprotein (a) and lipoprotein (a) in transgenic mice. J Am Coll Cardiol. 2011;57:1611–21.

    Article  CAS  PubMed  Google Scholar 

  94. Miller YI, Choi SH, Wiesner P, Fang L, Harkewicz R, Hartvigsen K, Boullier A, Gonen A, Diehl CJ, Que X, et al. Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circ Res. 2011;108:235–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Milne GL, Yin H, Hardy KD, Davies SS, Roberts LJ 2nd. Isoprostane generation and function. Chem Rev. 2011;111:5973–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Milne GL, Dai Q, Roberts LJ 2nd. The isoprostanes--25 years later. Biochim Biophys Acta. 2015;1851:433–45.

    Article  CAS  PubMed  Google Scholar 

  97. Mitchell JA, Kirkby NS. Eicosanoids, prostacyclin and cyclooxygenase in the cardiovascular system. Br J Pharmacol. 2018.

    Google Scholar 

  98. Mobert J, Becker BF, Zahler S, Gerlach E. Hemodynamic effects of isoprostanes (8-iso-prostaglandin F2alpha and E2) in isolated guinea pig hearts. J Cardiovasc Pharmacol. 1997;29:789–94.

    Article  CAS  PubMed  Google Scholar 

  99. Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell. 2011;145:341–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Morrow JD, Awad JA, Boss HJ, Blair IA, Roberts LJ 2nd. Non-cyclooxygenase-derived prostanoids (F2-isoprostanes) are formed in situ on phospholipids. Proc Natl Acad Sci U S A. 1992;89:10721–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nordhoff E, Ingendoh A, Cramer R, Overberg A, Stahl B, Karas M, Hillenkamp F, Crain PF. Matrix-assisted laser desorption/ionization mass spectrometry of nucleic acids with wavelengths in the ultraviolet and infrared. Rapid Commun Mass Spectrom. 1992;6:771–6.

    Article  CAS  PubMed  Google Scholar 

  102. Oh SF, Dona M, Fredman G, Krishnamoorthy S, Irimia D, Serhan CN. Resolvin E2 formation and impact in inflammation resolution. J Immunol. 2012;188:4527–34.

    Article  CAS  PubMed  Google Scholar 

  103. Ozen G, Norel X. Prostanoids in the pathophysiology of human coronary artery. Prostaglandins Other Lipid Mediat. 2017;133:20–8.

    Article  CAS  PubMed  Google Scholar 

  104. Ozen G, Topal G, Gomez I, Ghorreshi A, Boukais K, Benyahia C, Kanyinda L, Longrois D, Teskin O, Uydes-Dogan BS, et al. Control of human vascular tone by prostanoids derived from perivascular adipose tissue. Prostaglandins Other Lipid Mediat. 2013;107:13–7.

    Article  CAS  PubMed  Google Scholar 

  105. Palmblad J, Malmsten CL, Uden AM, Radmark O, Engstedt L, Samuelsson B. Leukotriene B4 is a potent and stereospecific stimulator of neutrophil chemotaxis and adherence. Blood. 1981;58:658–61.

    CAS  PubMed  Google Scholar 

  106. Park SK, Herrnreiter A, Pfister SL, Gauthier KM, Falck BA, Falck JR, Campbell WB. GPR40 is a low-affinity epoxyeicosatrienoic acid receptor in vascular cells. J Biol Chem. 2018;293:10675–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pidkovka NA, Cherepanova OA, Yoshida T, Alexander MR, Deaton RA, Thomas JA, Leitinger N, Owens GK. Oxidized phospholipids induce phenotypic switching of vascular smooth muscle cells in vivo and in vitro. Circ Res. 2007;101:792–801.

    Article  CAS  PubMed  Google Scholar 

  108. Pluchart H, Khouri C, Blaise S, Roustit M, Cracowski JL. Targeting the prostacyclin pathway: beyond pulmonary arterial hypertension. Trends Pharmacol Sci. 2017;38:512–23.

    Article  CAS  PubMed  Google Scholar 

  109. Poli G, Cecchini G, Biasi F, Chiarpotto E, Canuto RA, Biocca ME, Muzio G, Esterbauer H, Dianzani MU. Resistance to oxidative stress by hyperplastic and neoplastic rat liver tissue monitored in terms of production of unpolar and medium polar carbonyls. Biochim Biophys Acta. 1986;883:207–14.

    Article  CAS  PubMed  Google Scholar 

  110. Poli G, Biasi F, Chiarpotto E, Dianzani MU, De Luca A, Esterbauer H. Lipid peroxidation in human diseases: evidence of red cell oxidative stress after circulatory shock. Free Radic Biol Med. 1989;6:167–70.

    Article  CAS  PubMed  Google Scholar 

  111. Poorani R, Bhatt AN, Dwarakanath BS, Das UN. COX-2, aspirin and metabolism of arachidonic, eicosapentaenoic and docosahexaenoic acids and their physiological and clinical significance. Eur J Pharmacol. 2016;785:116–32.

    Article  CAS  PubMed  Google Scholar 

  112. Purushothaman KR, Purushothaman M, Levy AP, Lento PA, Evrard S, Kovacic JC, Briley-Saebo KC, Tsimikas S, Witztum JL, Krishnan P, et al. Increased expression of oxidation-specific epitopes and apoptosis are associated with haptoglobin genotype: possible implications for plaque progression in human atherosclerosis. J Am Coll Cardiol. 2012;60:112–9.

    Article  CAS  PubMed  Google Scholar 

  113. Que X, Hung MY, Yeang C, Gonen A, Prohaska TA, Sun X, Diehl C, Maatta A, Gaddis DE, Bowden K, et al. Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. Nature. 2018;558:301–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Roman RJ. P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev. 2002;82:131–85.

    Article  CAS  PubMed  Google Scholar 

  115. Romanoski CE, Che N, Yin F, Mai N, Pouldar D, Civelek M, Pan C, Lee S, Vakili L, Yang WP, et al. Network for activation of human endothelial cells by oxidized phospholipids: a critical role of heme oxygenase 1. Circ Res. 2011;109:e27–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Santilli F, Boccatonda A, Davi G, Cipollone F. The Coxib case: are EP receptors really guilty? Atherosclerosis. 2016;249:164–73.

    Article  CAS  PubMed  Google Scholar 

  117. Sasset L, Zhang Y, Dunn TM, Di Lorenzo A. Sphingolipid de novo biosynthesis: a rheostat of cardiovascular homeostasis. Trends Endocrinol Metab. 2016;27:807–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Scull CM, Tabas I. Mechanisms of ER stress-induced apoptosis in atherosclerosis. Arterioscler Thromb Vasc Biol. 2011;31:2792–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Seimon TA, Nadolski MJ, Liao X, Magallon J, Nguyen M, Feric NT, Koschinsky ML, Harkewicz R, Witztum JL, Tsimikas S, et al. Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. Cell Metab. 2010;12:467–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Serbulea V, DeWeese D, Leitinger N. The effect of oxidized phospholipids on phenotypic polarization and function of macrophages. Free Radic Biol Med. 2017;111:156–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Serbulea V, Upchurch CM, Schappe MS, Voigt P, DeWeese DE, Desai BN, Meher AK, Leitinger N. Macrophage phenotype and bioenergetics are controlled by oxidized phospholipids identified in lean and obese adipose tissue. Proc Natl Acad Sci U S A. 2018;115:E6254–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Serhan CN. Lipoxin biosynthesis and its impact in inflammatory and vascular events. Biochim Biophys Acta. 1994;1212:1–25.

    Article  CAS  PubMed  Google Scholar 

  123. Serhan CN, Yang R, Martinod K, Kasuga K, Pillai PS, Porter TF, Oh SF, Spite M. Maresins: novel macrophage mediators with potent antiinflammatory and proresolving actions. J Exp Med. 2009;206:15–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sharma JN, Jawad NM. Adverse effects of COX-2 inhibitors. ScientificWorldJournal. 2005;5:629–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Slatter DA, Percy CL, Allen-Redpath K, Gajsiewicz JM, Brooks NJ, Clayton A, Tyrrell VJ, Rosas M, Lauder SN, Watson A, et al. Enzymatically oxidized phospholipids restore thrombin generation in coagulation factor deficiencies. JCI insight. 2018;3(6):e98459.

    Article  PubMed Central  Google Scholar 

  126. Smith MJ. Biological activities of leukotriene B4. Agents Actions. 1981;11:571–2.

    Article  CAS  PubMed  Google Scholar 

  127. Smyth SS, Mueller P, Yang F, Brandon JA, Morris AJ. Arguing the case for the autotaxin-lysophosphatidic acid-lipid phosphate phosphatase 3-signaling nexus in the development and complications of atherosclerosis. Arterioscler Thromb Vasc Biol. 2014;34:479–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Soltwisch J, Jaskolla TW, Hillenkamp F, Karas M, Dreisewerd K. Ion yields in UV-MALDI mass spectrometry as a function of excitation laser wavelength and optical and physico-chemical properties of classical and halogen-substituted MALDI matrixes. Anal Chem. 2012;84:6567–76.

    Article  CAS  PubMed  Google Scholar 

  129. Spector AA, Kim HY. Cytochrome P450 epoxygenase pathway of polyunsaturated fatty acid metabolism. Biochim Biophys Acta. 2015;1851:356–65.

    Article  CAS  PubMed  Google Scholar 

  130. Spite M, Serhan CN. Novel lipid mediators promote resolution of acute inflammation: impact of aspirin and statins. Circ Res. 2010;107:1170–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Subbanagounder G, Wong JW, Lee H, Faull KF, Miller E, Witztum JL, Berliner JA. Epoxyisoprostane and epoxycyclopentenone phospholipids regulate monocyte chemotactic protein-1 and interleukin-8 synthesis. Formation of these oxidized phospholipids in response to interleukin-1beta. J Biol Chem. 2002;277:7271–81.

    Article  CAS  PubMed  Google Scholar 

  132. Tabas I, Bornfeldt KE. Macrophage phenotype and function in different stages of atherosclerosis. Circ Res. 2016;118:653–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tacconelli S, Patrignani P. Inside epoxyeicosatrienoic acids and cardiovascular disease. Front Pharmacol. 2014;5:239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Takats Z, Wiseman JM, Gologan B, Cooks RG. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 2004;306:471–3.

    Article  CAS  PubMed  Google Scholar 

  135. Tontonoz P, Mangelsdorf DJ. Liver X receptor signaling pathways in cardiovascular disease. Mol Endocrinol. 2003;17:985–93.

    Article  CAS  PubMed  Google Scholar 

  136. Tukijan F, Chandrakanthan M, Nguyen LN. Mini-review: the signaling roles of S1P derived from red blood cells and platelets. Br J Pharmacol. 2018;175:3741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. van der Valk FM, Bekkering S, Kroon J, Yeang C, Van den Bossche J, van Buul JD, Ravandi A, Nederveen AJ, Verberne HJ, Scipione C, et al. Oxidized phospholipids on lipoprotein(a) elicit arterial wall inflammation and an inflammatory monocyte response in humans. Circulation. 2016;134:611–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Wada M, DeLong CJ, Hong YH, Rieke CJ, Song I, Sidhu RS, Yuan C, Warnock M, Schmaier AH, Yokoyama C, et al. Enzymes and receptors of prostaglandin pathways with arachidonic acid-derived versus eicosapentaenoic acid-derived substrates and products. J Biol Chem. 2007;282:22254–66.

    Article  CAS  PubMed  Google Scholar 

  139. Wagner KM, McReynolds CB, Schmidt WK, Hammock BD. Soluble epoxide hydrolase as a therapeutic target for pain, inflammatory and neurodegenerative diseases. Pharmacol Ther. 2017;180:62–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Waldman M, Peterson SJ, Arad M, Hochhauser E. The role of 20-HETE in cardiovascular diseases and its risk factors. Prostaglandins Other Lipid Mediat. 2016;125:108–17.

    Article  CAS  PubMed  Google Scholar 

  141. Waltenberger B, Garscha U, Temml V, Liers J, Werz O, Schuster D, Stuppner H. Discovery of potent soluble epoxide hydrolase (sEH) inhibitors by pharmacophore-based virtual screening. J Chem Inf Model. 2016;56:747–62.

    Article  CAS  PubMed  Google Scholar 

  142. Watson AD, Leitinger N, Navab M, Faull KF, Horkko S, Witztum JL, Palinski W, Schwenke D, Salomon RG, Sha W, et al. Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J Biol Chem. 1997;272:13597–607.

    Article  CAS  PubMed  Google Scholar 

  143. Watson AD, Subbanagounder G, Welsbie DS, Faull KF, Navab M, Jung ME, Fogelman AM, Berliner JA. Structural identification of a novel pro-inflammatory epoxyisoprostane phospholipid in mildly oxidized low density lipoprotein. J Biol Chem. 1999;274:24787–98.

    Article  CAS  PubMed  Google Scholar 

  144. Welton AF, Crowley HJ, Miller DA, Yaremko B. Biological activities of a chemically synthesized form of leukotriene E4. Prostaglandins. 1981;21:287–96.

    Article  CAS  PubMed  Google Scholar 

  145. Wiseman JM, Puolitaival SM, Takats Z, Cooks RG, Caprioli RM. Mass spectrometric profiling of intact biological tissue by using desorption electrospray ionization. Angew Chem. 2005;44:7094–7.

    Article  CAS  Google Scholar 

  146. Yan FX, Li HM, Li SX, He SH, Dai WP, Li Y, Wang TT, Shi MM, Yuan HX, Xu Z, et al. The oxidized phospholipid POVPC impairs endothelial function and vasodilation via uncoupling endothelial nitric oxide synthase. J Mol Cell Cardiol. 2017;112:40–8.

    Article  CAS  PubMed  Google Scholar 

  147. Yanagida K, Hla T. Vascular and immunobiology of the circulatory sphingosine 1-phosphate gradient. Annu Rev Physiol. 2017;79:67–91.

    Article  CAS  PubMed  Google Scholar 

  148. Yang K, Han X. Lipidomics: techniques, applications, and outcomes related to biomedical sciences. Trends Biochem Sci. 2016;41:954–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Yeang C, Hasanally D, Que X, Hung MY, Stamenkovic A, Chan D, Chaudhary R, Margulets V, Edel AL, Hoshijima M, et al. Reduction of myocardial ischemiareperfusion injury by inactivating oxidized phospholipids. Cardiovasc Res. 2018;115(1):179–89.

    Article  PubMed Central  Google Scholar 

  150. Yokoyama U. Prostaglandin E-mediated molecular mechanisms driving remodeling of the ductus arteriosus. Pediatr Int. 2015;57:820–7.

    Article  CAS  PubMed  Google Scholar 

  151. Yokoyama U, Minamisawa S, Ishikawa Y. The multiple roles of prostaglandin E2 in the regulation of the ductus arteriosus. In: Nakanishi T, Markwald RR, Baldwin HS, Keller BB, Srivastava D, Yamagishi H, editors. Etiology and morphogenesis of congenital heart disease: from gene function and cellular interaction to morphology. Tokyo: Springer; 2016. p. 253–8.

    Chapter  Google Scholar 

  152. Zhang Y, Breevoort SR, Angdisen J, Fu M, Schmidt DR, Holmstrom SR, Kliewer SA, Mangelsdorf DJ, Schulman IG. Liver LXRalpha expression is crucial for whole body cholesterol homeostasis and reverse cholesterol transport in mice. J Clin Invest. 2012;122:1688–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhang X, Wang T, Gui P, Yao C, Sun W, Wang L, Wang H, Xie W, Yao S, Lin Y, et al. Resolvin D1 reverts lipopolysaccharide-induced TJ proteins disruption and the increase of cellular permeability by regulating IkappaBalpha signaling in human vascular endothelial cells. Oxidative Med Cell Longev. 2013;2013:185715.

    Google Scholar 

  154. Zhang C, Booz GW, Yu Q, He X, Wang S, Fan F. Conflicting roles of 20-HETE in hypertension and renal end organ damage. Eur J Pharmacol. 2018;833:190–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Zhao YL, Zhang L, Yang YY, Tang Y, Zhou JJ, Feng YY, Cui TL, Liu F, Fu P. Resolvin D1 protects lipopolysaccharide-induced acute kidney injury by down-regulating nuclear factor-kappa B signal and inhibiting apoptosis. Chin Med J. 2016;129:1100–7.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Leitinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Upchurch, C., Leitinger, N. (2019). Biologically Active Lipids in Vascular Biology. In: Geiger, M. (eds) Fundamentals of Vascular Biology. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-030-12270-6_9

Download citation

Publish with us

Policies and ethics