Skip to main content

Trends in the Phytoplankton Variability of the Selected Polish Lakes

  • Chapter
  • First Online:
Polish River Basins and Lakes – Part II

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 87))

  • 390 Accesses

Abstract

The directional changes of phytoplankton in Polish lakes were presented to show some tendency concerning the total biomass, composition, and biodiversity as related to environmental variables. The selected lakes were analyzed concerning various types of antropopressure, e.g., relatively low, medium, and huge human impact including sewage inflow history, different hydrological regime nature as natural phenomenon of flow-through lakes and as a consequence of artificial including into water-cooling system with short retention time, and different restoration actions (biomanipulation and artificial aeration).

Smaller biomass and more varied structure of phytoplankton (co-dominated by Bacillariophyta, Cryptophyta, Miozoa, and Cyanobacteria) were typical of the PEG Model for mesotrophic or even oligotrophic temperate lakes with lower trophy level. On the contrary, a large biomass with Cyanobacteria domination in summer was typical in more eutrophied lakes. The prominent dominants were primarily chroococcalean Microcystis aeruginosa and M. wesenbergii and filamentous Planktolyngbya limnetica, Pseudanabaena limnetica, Limnothrix redekei, and Planktothrix agardhii. Species richness and values of biodiversity index were usually higher in more eutrophied lakes than in mesotrophic lakes. The overall relationships of phytoplankton groups with environmental variables indicated that water transparency in less eutrophied lakes while water temperature and nutrient concentrations in more eutrophied lakes induced phytoplankton growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paerl HW, Hall NS, Calandrino ES (2011) Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci Total Environ 409:1739–1745

    Article  CAS  Google Scholar 

  2. Carey CC, Ibelings BW, Hoffmann EP, Hamilton DP, Brookes JD (2012) Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res 46:1394–1407. https://doi.org/10.1016/j.watres.2011.12.016

    Article  CAS  Google Scholar 

  3. Elliot JA (2012) Is the future blue-green? A review of the current model predictions of how climate change could affect pelagic freshwater cyanobacteria. Water Res 46(5):1364–1371. https://doi.org/10.1016/j.watres.2011.12.018

    Article  CAS  Google Scholar 

  4. Jeppesen E, Meerhoff M, Davidson TA, Trolle D, Søndergaard M, Lauridsen TL, Bekliğlu M, Brucet S, Volta P, González-Bergonzoni I, Nielsen A (2014) Climate change impacts on lakes: an integrated ecological perspective based on a multi-faced approach with special focus on shallow lakes. J Limnol 73(S1):88–111

    Article  Google Scholar 

  5. Rigosi A, Carey CC, Ibelings BW, Brookes JD (2014) The interaction between climate warnings and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnol Oceanogr 59(1):99–114

    Article  Google Scholar 

  6. Bernhardt H (1987) Strategies of lake sanitation. Shweiz Z Hydrol 49(2):202–219

    Article  CAS  Google Scholar 

  7. Reynolds CS (2003) The development of perceptions of aquatic eutrophication and its control. Ecohydrol Hydrobiol 3(2):149–163

    Google Scholar 

  8. Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25(4b):704–726

    Article  Google Scholar 

  9. Mazur-Marzec H, Spoof L, Kobos J, Pliński M, Meriluoto J (2008) Cyanobacterial hepatotoxins, microcystins and nodularins, in fresh and brackish waters of Pomeranian Province, northern Poland. Oceanol Hydrobiol Stud 37(4):1–19. https://doi.org/10.2478/v10009-008-0014-0

    Article  CAS  Google Scholar 

  10. Kobos J, Błaszczyk A, Hohlfeld N, Toruńska-Sitarz A, Krakowiak A, Hebel A, Stryk K, Grabowska M, Toporowska M, Kokociński M, Messyasz B, Rybak A, Napiórkowska-Krzebietke A, Nawrocka L, Pełechata A, Budzyńska A, Zagajewski P, Mazur-Marzec H (2013) Cyanobacteria and cyanotoxins in Polish freshwater bodies. Oceanol Hydrobiol Stud 42(4):358–378. https://doi.org/10.2478/s13545-013-0093-8

    Article  CAS  Google Scholar 

  11. Napiórkowska-Krzebietke A (2015) Cyanobacterial bloom intensity in the ecologically relevant state of lakes – an approach to water framework directive implementation. Oceanol Hydrobiol Stud 44(1):97–108. https://doi.org/10.1515/ohst-2015-0010

    Article  Google Scholar 

  12. Napiórkowska-Krzebietke A, Dunalska J, Grochowska J, Łopata M, Brzozowska R (2015) Intensity and thresholds of cyanobacterial blooms – an approach to determine the necessity to restore urban lakes. Carpath J Earth Environ 10(2):123–132

    Google Scholar 

  13. Carlson RE (1977) A trophic state index for lakes. Limnol Oceanogr 22:361–369

    Article  CAS  Google Scholar 

  14. Kratzer CR, Brezonik PL (1981) A Carlson type trophic state index for nitrogen in Florida lakes. Water Res Bull 17:713–715

    Article  CAS  Google Scholar 

  15. Carlson RE, Simpson J (1996) A coordinator’s guide to volunteer lake monitoring methods. North American Lake Management Society, Madison, pp 1–96

    Google Scholar 

  16. Sommer U, Gliwicz ZM, Lampert W, Duncan A (1986) The PEG-model of seasonal succession of planktonic events in freshwaters. Arch Hydrobiol 106:433–471

    Google Scholar 

  17. Oleksowicz AS (1988) The dynamics of algal communities in the Kashubian Lakes of different trophy. Rozprawy UMK, Torun, p 84. (in Polish)

    Google Scholar 

  18. de Senerpont Domis LN, Elser JJ, Gsell AS, Huszar VL, Ibelings BW, Jeppesen E, Kosten S, Mooij WM, Roland F, Sommer U, van Donk E, Winder M, Lürling M (2013) Plankton dynamics under different climatic conditions in space and time. Freshw Biol 58:463–482. https://doi.org/10.1111/fwb.12053

    Article  Google Scholar 

  19. Brentrup JA, Williamson CE, Colom-Montero W, Eckert W, de Eyto E, Grossart HP, Huot Y, Isles PDF, Knoll LB, Leach TH, McBride CG, Pierson D, Pomati F, Read JS, Rose KC, Samal NR, Staehr PA, Winslow LA (2016) The potential of high-frequency profiling to assess vertical and seasonal patterns of phytoplankton dynamics in lakes: an extension of the Plankton Ecology Group (PEG) model. Inland Waters 6(4):565–580. https://doi.org/10.5268/IW-6.4.890

    Article  CAS  Google Scholar 

  20. Guiry MD, Guiry GM (2018) AlgaeBase. World-Wide Electronic Publication, National University of Ireland, Galway. http://www.algaebase.org; searched on 06 August 2018

    Google Scholar 

  21. Napiórkowska-Krzebietke A, Stawecki K, Pyka JP, Zdanowski B, Zębek E (2016) Phytoplankton and the physicochemical background in an assessment of the ecological and trophic conditions in vendace-type lakes. J Elem 21(1):159–172. https://doi.org/10.5601/jelem.2015.20.2.891

    Article  Google Scholar 

  22. Napiórkowska-Krzebietke A, Hutorowicz A (2013) A comparison of epilimnetic versus metalimnetic phytoplankton assemblages in two mesotrophic lakes. Oceanol Hydrobiol Stud 42(1):89–98

    Article  Google Scholar 

  23. Napiórkowska-Krzebietke A, Stawecki K, Pyka JP, Hutorowicz J, Zdanowski B (2013) Phytoplankton in relation to water quality of a mesotrophic lake. Pol J Environ Stud 22(3):793–800

    Google Scholar 

  24. Napiórkowska-Krzebietke A, Hutorowicz A (2014) Phytoplankton in an ecological status assessment of the vendace-type Lake Dejguny (northeastern Poland). Arch Pol Fish 22:29–40. https://doi.org/10.2478/aopf-2014-0004

    Article  Google Scholar 

  25. Napiórkowska-Krzebietke A, Hutorowicz A (2005) Long-term changes of phytoplankton in Lake Mamry Północne. Oceanol Hydrobiol Stud 34(3):217–228

    Google Scholar 

  26. Napiórkowska-Krzebietke A, Hutorowicz A (2007) Long-term changes in the biomass and composition of phytoplankton in a shallow, flow-through lake Kirsajty (Masurian Lakeland, Poland). Pol J Nat Sci 22:512–524

    Article  Google Scholar 

  27. Napiórkowska-Krzebietke A, Wierzchowska M, Błocka B, Hutorowicz J, Hutorowicz A, Zdanowski B (2007) Changes in the trophic state of Lake Niegocin after the modernization of a local wastewater treatment plant. Limnol Rev 7(3):153–159

    Google Scholar 

  28. Napiórkowska-Krzebietke A, Hutorowicz A (2006) Long-term changes of phytoplankton in Lake Niegocin, in the Masurian Lake Region, Poland. Oceanol Hydrobiol Stud 35(3):209–226

    Google Scholar 

  29. Hutorowicz A, Napiórkowska-Krzebietke A (2007) Changes in phytoplankton assemblages after the reduction of sewage discharge into Lake Niegocin (Mazurian Lake District, Poland). Oceanol Hydrobiol Stud 36:137–145

    Google Scholar 

  30. Jakubowska N, Zagajewski P, Gołdyn R (2013) Water blooms and cyanobacterial toxins in lakes. Pol J Environ Stud 22(4):1077–1082

    CAS  Google Scholar 

  31. Napiórkowska-Krzebietke A, Dunalska JA, Zębek E (2017) Taxa-specific eco-sensitivity in relation to phytoplankton bloom stability and ecologically relevant lake state. Acta Oecol 81:10–21. https://doi.org/10.1016/j.actao.2017.04.002

    Article  Google Scholar 

  32. Napiórkowska-Krzebietke A, Dunalska J (2015) Phytoplankton-based recovery requirement for urban lakes in the implementation of the Water Framework Directive’s ecological targets. Oceanol Hydrobiol Stud 44(1):109–119. https://doi.org/10.1515/ohst-2015-0000

    Article  Google Scholar 

  33. Naselli-Flores L (2008) Urban lakes: ecosystems at risk, worthy of the best care. In: Sengupta M, Dalwani R (eds) Proceedings of Taal2007: the 12th world lake conference, pp 1333–1337

    Google Scholar 

  34. Saros JE, Strock KE, Mccue J, Hogan E, Anderson NJ (2014) Response of Cyclotella species to nutrients and incubation depth in Arctic lakes. J Plankton Res 36(2):450–460. https://doi.org/10.1093/plankt/fbt126

    Article  CAS  Google Scholar 

  35. Napiórkowska-Krzebietke A, Pasztaleniec A, Hutorowicz A (2009) Phytoplankton – the element in the ecological status assessment for lakes of the Wel river catchment area. Teka Kom Ochr Kszt Środ Przyr – OL PAN 6:200–205

    Google Scholar 

  36. Hutorowicz A, Napiórkowska-Krzebietke A, Pasztaleniec A, Hutorowicz J, Lyche Solheim A, Skjelbred B (2011) Phytoplankton. In: Soszka H (ed) Ecological status assessment of the waters in the Wel River catchment. Guidelines for integrated assessment of ecological status of rivers and lakes to support river basin management plans. IFI, Olsztyn, pp 143–168. (in Polish)

    Google Scholar 

  37. Pyka JP, Zdanowski B, Stawecki K (2013) Long-term trends in changes of the chemical composition of waters in lakes heated by electric power plants. Arch Pol Fish 21:343–355

    CAS  Google Scholar 

  38. Stawecki K, Zdanowski B, Pyka JP (2013) Long-term changes in post-cooling water loads from power plants and thermal and oxygen conditions in stratified lakes. Arch Pol Fish 21:331–342

    CAS  Google Scholar 

  39. Socha D (1997) Spatial and seasonal phytoplankton diversity in Licheńskie and Ślesińskie lakes, Konińskie District, in 1991–1993. Arch Pol Fish 5(1):117–136

    Google Scholar 

  40. Socha D, Hutorowicz A (2009) Changes in the quantitative relations of the phytoplankton in heated lakes. Arch Pol Fish 17(4):239–251

    Article  Google Scholar 

  41. Napiórkowska-Krzebietke A (2009) Diversity and dynamics of phytoplankton in lakes Lichenskie and Ślesinskie in 2004–2005. Arch Pol Fish 17:253–265

    Article  Google Scholar 

  42. Napiórkowska-Krzebietke A (2017) Phytoplankton response to fish-induced environmental changes in a temperate shallow pond-type lake. Arch Pol Fish 25(4):211–264. https://doi.org/10.1515/aopf-2017-0020

    Article  CAS  Google Scholar 

  43. Jeppesen E, Sondergaard M, Meerhoff M, Lauridesen TL, Jensen JP (2007) Shallow lake restoration by nutrient loading reduction – some recent findings and challenge ahead. Hydrobiologia 584:239–252. https://doi.org/10.1007/s10750-007-0596-7

    Article  CAS  Google Scholar 

  44. Wichelen J, Declerck S, Muylaert K, Hoste I, Greenens V, Vandekerkhove J, Michels E, Pauwn N, Hoffmann M, Meester L, Vyverman W (2007) The importance of drawdown and sediment removal for the restoration of the eutrophied shallow Lake Kraenepoel (Belgium). Hydrobiologia 584:291–303. https://doi.org/10.1007/s10750-007-0611-z

    Article  CAS  Google Scholar 

  45. Mcdonald KE, Lehman JT (2013) Dynamics of Aphanizomenon and Microcystis (cyanobacteria) during experimental manipulation of an urban impoundment. Lake Reservoir Manage 29(2):103–115. https://doi.org/10.1080/10402381.2013.800172

    Article  CAS  Google Scholar 

  46. Zębek E, Napiórkowska-Krzebietke A (2016) Response of phytoplankton to protective-restoration treatments enhancing water quality in a shallow urban lake. Environ Monit Assess 188:623. https://doi.org/10.1007/s10661-016-5633-4

    Article  CAS  Google Scholar 

  47. Zębek E, Szwejkowska M (2014) Influence evaluation of pretreated storm water on analysis of cyanobacteria numbers in Jeziorak Mały urban lake at various precipitation rates. Ochrona Środowiska 36(1):27–31. (in Polish)

    Google Scholar 

  48. Zębek E (2015a) Response of planktonic cyanobacteria and periphyton assemblages to physicochemical properties of stormwater in a shallow urban lake. J Elem 20(1):231–245. https://doi.org/10.5601/jelem.2014.19.2.679

    Article  Google Scholar 

  49. Zębek E (2015b) Effect of the fountain-based water aeration system on phytoplankton growth in a urban lake. Teka Kom Ochr Kszt Środ Przyr – OL PAN 12:128–137

    Google Scholar 

  50. Thebault E, Loreau M (2006) The relationship between biodiversity and ecosystem functioning in food webs. Ecol Res 21:17–25. https://doi.org/10.1007/s11284-005-0127-9

    Article  Google Scholar 

Download references

Acknowledgments

The material was collected and analyzed partially as a part of statutory researches conducted at the Stanisław Sakowicz Inland Fisheries Institute in Olsztyn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Napiórkowska-Krzebietke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Napiórkowska-Krzebietke, A., Zębek, E. (2020). Trends in the Phytoplankton Variability of the Selected Polish Lakes. In: Korzeniewska, E., Harnisz, M. (eds) Polish River Basins and Lakes – Part II. The Handbook of Environmental Chemistry, vol 87. Springer, Cham. https://doi.org/10.1007/978-3-030-12139-6_2

Download citation

Publish with us

Policies and ethics