Skip to main content

Part of the book series: RILEM State-of-the-Art Reports ((RILEM State Art Reports,volume 30))

  • 409 Accesses

Abstract

The numerous parameters which appear in the advanced models described in the previous chapter are in general dependent of some of the state variables, such as temperature. In this chapter, many expressions used in practice for the evolution of the hygral, thermal and mechanical parameters are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adenekan A.E., Patzek T. & Pruess K. (1993) Modelling of multiphase transport of multicomponent organic contaminants and heat in the subsurface: Numerical model formulation, Water Resour. Res., 29(11), 3727–3740.

    Google Scholar 

  • Anderberg Y. (2003) Course on effect of heat on concrete, International Center for Mechanical Sciences (CISM), 9–13 June 2003, Udine, Italy.

    Google Scholar 

  • Andrade C., Alonso C. & Khoury G.A. (2003) Course on effect of heat on concrete, International Center for Mechanical Sciences (CISM), 9–13 June 2003, Udine, Italy.

    Google Scholar 

  • Baggio P., Bonacina C. & Strada M. (1993) Trasporto di calore e di massa nel calcestruzzo cellulare. La Termotecnica, 47(12):53–60.

    Google Scholar 

  • Baroghel-Bouny V. & al. (1999) Characterization and identification of equilibrium and transfer moisture properties for ordinary and high-performance cementitious materials, Cement and Concrete Research, 29, pp. 1225–1238.

    Google Scholar 

  • Bažant Z.P. & Najjar L.J. (1972) Non linear water diffusion in non saturated concrete, Matériaux Constructions, Paris, 5(25):3–20.

    Google Scholar 

  • Bažant Z. P. & Thonguthai W. (1978), Pore pressure and drying of concrete at high temperature, In J. Eng. Mech. Div. ASCE. 104: 1059–1079.

    Google Scholar 

  • Bažant Z. P. & Thonguthai W. (1979) Pore pressure in heated concrete walls: theoretical prediction, In Mag. of Concr. Res. 31(107): 67–76.

    Google Scholar 

  • Bažant Z.P. & Kaplan M.F. (1996) Concrete at High Temperatures: Material Properties and Mathematical Models, Harlow: Longman.

    Google Scholar 

  • Bendar T. (2002) Approximation of liquid moisture transport coefficient of porous building materials by suction and drying experiment. Demands on determination of drying curve. Trondheim, Norway, 17–19 June 2002. 6th Symposium on Building Physics in the Nordic Countries.

    Google Scholar 

  • Blundell R., Diamond C. & Browne R.G. (1976) The properties of concrete subjected to elevated temperatures, Technical Note No. 9, June, CIRIA Underwater Engineering Group, London.

    Google Scholar 

  • Chung JH, Consolazio GR. (2005) Numerical modelling of transport phenomena in reinforced concrete exposed to elevated temperatures. Cem Concr Res, 35(3), 597–608.

    Google Scholar 

  • Collet Y. (1977) Etude des propriétés du béton soumis a des températures élevées entre 200 et 900 °C, Annales des Travaux Publics Beiges, no 4, pp. 332–338.

    Google Scholar 

  • Couture F., Jomaa W. & Puiggali J.-R. (1996) Relative permeability relations: a key factor for a drying model, Transp. Porous Media, 23, 303–335.

    Google Scholar 

  • Daïan J.F. (1988) Condensation and isothermal water transfer in cement mortar. Part 1—Pore size distribution water condensation and imbibition, Transport Porous Med. 3(6), 563–589.

    Google Scholar 

  • Daian J.F. (1989) Condensation and isothermal water transfer in cement mortar, Part II–transient condensation of water vapour, Transp. Porous Media, 44, 1–16.

    Google Scholar 

  • Dal Pont S. (2004) Lien entre la perméabilité et l’endommagement dans les bétons à haute température, Thèse de doctorat, ENPC, France.

    Google Scholar 

  • Davie C.T., Pearce C.J. & Bićanić N. (2010) Mater Struct. 43(Suppl 1), 13.

    Google Scholar 

  • Davie, C.T., Pearce, C.J., Bicanic, N. (2006) Coupled heat and moisture transport in concrete at elevated temperatures: effects of capillary pressure and adsorbed water. Numer Heat Transf, A 49(8), 733–763.

    Google Scholar 

  • Davie C.T., Zhang H.L., & Gibson A. (2012) Investigation of a continuum damage model as an indicator for the prediction of spalling in fire exposed concrete. Comput. Struct. 94–95, 54–69.

    Google Scholar 

  • Deseur B. (1999) Modélisation du comportement du béton à hautes températures, Mémoire de DEA, ENPC, France.

    Google Scholar 

  • Dougill J.W. (1968) Some effects of thermal volume changes on the properties and behaviour of concrete, The Structure of Concrete. Cement and Concrete Association, London, pp. 499–513.

    Google Scholar 

  • England G.L. & Ross A.D., “Shrinkage, Moisture and Pore Pressures in Heated Concrete” A.C.I. International Seminar on Concrete for Nuclear Reactors, Berlin (1970).

    Google Scholar 

  • European Committee for Standardisation (CEN) (2004) Eurocode 2: Design of concrete structures. European Standard EN 1992, CEN, Brussels.

    Google Scholar 

  • European Committee for Standardisation (CEN) (2004) Eurocode 4: Design of composite steel and concrete structures. European Standard EN 1994, CEN, Brussels.

    Google Scholar 

  • Feraille A. (2000) Le rôle de l’eau dans le comportement a haute température des bétons, Thèse de doctorat, ENPC, France, 186p.

    Google Scholar 

  • Forsyth P.A. & Simspon R.B. (1991) A two phase, two component model for natural convection in a porous medium. International Journal for Numerical Methods in Fluids, 12(7):655–682.

    Google Scholar 

  • Franssen J.M. (1987) Etude du comportement au feu des structures mixtes acier-béton. Thèse de Doctorat, Université de liège, Belgique, 276p.

    Google Scholar 

  • Gawin D., Majorana C.E. & Schrefler B.A. (1999) Numerical analysis of hygro-thermal behaviour and damage of concrete at high temperature. Mech. Cohes. Frict. Mater., 4:37–74.

    Google Scholar 

  • Gawin D., Majorana C.E., Pesavento F. & Schrefler B.A. (2001) Modelling thermo-hygromechanical behaviour of high performance concrete in high temperature environments, Proc. of FraMCoS-4 Fourth International Conference on Fracture Mechanics of Concrete and Concrete Structures, R. de Borst, J. Mazars, G. Pijaudier-Cabot, J.G.M. van Mier (eds) Balkema Publishers, Cachan, pp 199–206.

    Google Scholar 

  • Gawin D., Schrefler B.A. & Pesavento F. (2002) Modelling of hygro-thermal behaviour and damage of concrete at temperature above the critical point of water. International Journal for Numerical and Analytical Methods in Geomechanics, 26(6):537–562.

    Google Scholar 

  • Gawin D., Pesavento F. & Schrefler B.A. (2003) Modelling of hygro-thermal behaviour of concrete at high temperature with thermo-chemical and mechanical material degradation. Computer Methods in Applied Mechanics and Engineering, 192(13–14):1731–1771.

    Google Scholar 

  • Gérard B., et al. (1996) Cracking and permeability of concrete under tension, Mater. Struct. 29, pp. 141–151.

    Google Scholar 

  • Gernay, T., Millard, A., & Franssen, J.-M. (2013). A multiaxial constitutive model for concrete in the fire situation: Theoretical formulation. International Journal of Solids and Structures, 50(22–23), 3659–3673.

    Google Scholar 

  • Harmathy T.Z. (1970) Thermal properties of concrete at elevated temperatures. ASTM Journal of Materials, 5(1):47–74.

    Google Scholar 

  • Harmathy T.Z & Allen L.W. (1973) Thermal properties of selected masonry unit concretes, Journal of American Concrete Institute, vol. 70, no 2, pp. 132–142.

    Google Scholar 

  • Ju J.W. & Zhang Y. (1998) Axisymmetric thermo-mechanical constitutive and damage modelling for air field concrete pavement under transient high temperature, Mechanics of Materials, 29, 307–323.

    Google Scholar 

  • Kalifa P., Tsimbrovska M. & Baroghel-Bouny V. (1998) High performance concrete at elevated temperature – An extensive experimental investigation on thermal, hydral and microstructure properties. Proc. of Int. Symp. On high-performance and reactive powder concrete. Aug. 16–20, Sherbrooke Canada.

    Google Scholar 

  • Khoury G. & Majorana C. (2003) Course on effect of heat on concrete, International Center for Mechanical Sciences (CISM), 9–13 June 2003, Udine, Italy.

    Google Scholar 

  • Le Neindre B. (1993) Tensions superficielles des composés inorganiques et des mélanges, volume K476 of Traite Constantes Physico-Chimiques. Techniques de l’Ingenieur.

    Google Scholar 

  • Luccioni B M, Figueroa M I, Danesi R F. (2003) Thermo-mechanic model for concrete exposed to elevated temperatures. Eng Struct, 25 (6): 729–742.

    Google Scholar 

  • Luckner L., van Genuchten M.T. & Nielsen D.R. (1989) A consistent set of parametric models for the two-phase-flow of immiscible fluids in the subsurface, Water Res., 25(10), 2225–2245.

    Google Scholar 

  • Mainguy M., Coussy O. & Baroghel-Bouny V. (2001) Role of air pressure in drying of weakly permeable materials, J. Eng. Mech., 127(6), 582–592.

    Google Scholar 

  • Mason E.A. and Monchik L. (1965) Survey of the equation of state and transport properties of moist gases, Humidity Moisture Measurement Control Science, 3, 257–272.

    Google Scholar 

  • Meschke G. & Grasberger S. (2003) Numerical modelling of coupled hygro-mechanical degradation of cementitious materials, J. Eng. Mech., 129(4), 383–392.

    Google Scholar 

  • Millington R.J. (1959) Gas diffusion in porous media, Science, 130, 100–102.

    Google Scholar 

  • Monteith J.L. & Unsworth M.H. (1990) Principles of environmental physics. Edward Arnold, London.

    Google Scholar 

  • Mounajed G. & Obeid W. (2004) A new coupling F.E. model for the simulation of thermal-hydro-mechanical behaviour of concretes at high temperatures, Mater. Struct. 37, 422–432.

    Google Scholar 

  • Mualem Y. (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res., 12, 513–522.

    Google Scholar 

  • Nasrallah S. B. & Perre P. (1988) Detailed study of a model of heat and mass transfer during convective drying of porous media, Int. J. Heat Mass Transfer, 31(5), 957–967.

    Google Scholar 

  • Neville A.M. (1973) Properties of Concretes. A Halsted Press Book, J. Wiley & Sons, New York, N.Y.

    Google Scholar 

  • Nechnech W., Meftah F., Reynouard J. M. 2002) An elasto-plastic damage model for plain concrete subjected to high temperatures, Engineering Structures, 24, pp. 597–611.

    Google Scholar 

  • Nielsen, C. V., C. J. Pearce, et al. (2002). Theoretical model of high temperature effects on uniaxial concrete member under elastic restraint. Magazine of Concrete Research 54(4): 239–249.

    Google Scholar 

  • Noumowé A. (1995) Effet de hautes températures (20–600 °C) sur le béton - Cas particulier du béton à hautes performances. Thèse de Génie Civil: Institut National des Sciences Appliquées de Lyon et Univ. Lyon I, 1995.

    Google Scholar 

  • Nyame B.K. & Illston J.M. (1981) Relationships between permeability and pore structure of hardened cement paste, Magazine of Concrete Research, 33(116):139–146.

    Google Scholar 

  • Ohigishi S., Miyasaka S. & Chida J. (1972) On properties of magnetite and serpentine concrete at elevated temperatures for nuclear reactor shielding, In International Seminar on Concrete for Nuclear Reactors, AC1 Special Publication No. 34, Vol. 3, Paper PS34–57, American Concrete Institute, Detroit, pp. 1243–53.

    Google Scholar 

  • Perre P. (1987) Measurements of softwoods’ permeability to air: importance upon the drying model, Int. Comm. Heat Mass Transfer, 14, 519–529.

    Google Scholar 

  • Pezzani P. (1988) Propriétés thermodynamiques de l’eau (K585), Techniques de l’ingénieur, traité constantes phisico-chimiques.

    Google Scholar 

  • Picandet V., Khelidj A. & Bastian G. (2001) Effect of axial compressive damage on gas permeability of ordinary and high-performance concrete, Cement and Concrete Research, 31, 1525–1532.

    Google Scholar 

  • Powers T.C. & Brownyard T.L. (1948) Studies of the physical properties of hardened cement paste. Research Department Bulletin No. 22. Portland Cement Association, Chicago.

    Google Scholar 

  • Rastiello G., Boulay C., Dal Pont S., Tailhan J., Rossi P., Real-time water permeability evolution of a localized crack in concrete under loading. Cement and Concrete Research, Vol.56/2, pp. 20–26: 2014.

    Google Scholar 

  • Raznjevic K. (1970) Tables et diagrammes thermodynamiques, Editions Eyrolles.

    Google Scholar 

  • Savage B.M. & Janssen D.J. (1997) Soil physics principles validated for use in predicting unsaturated moisture movement in Portland cement concrete, ACI Mat J., 94(1), 63–70.

    Google Scholar 

  • Schneider U. (1982) Behaviour of concrete at high temperatures. Paris: RILEM, 72p. Report to Committee no 44-PHT.

    Google Scholar 

  • Schneider U. (1988) Concrete at high temperatures: a general review, Fire safety J. 13, 55–68.

    Google Scholar 

  • Schneider U. & Herbst H.J. (1989) Permeabilitaet und Porositaet von Beton bei hohen Temperaturen (in German), Deutscher Ausschuss Stahlbeton, 403, 23–52.

    Google Scholar 

  • Sleep B.E. & Sykes J.F. (1993) Compositional simulation of groundwater contamination by organic compounds, 1. Model development and verification, Water Resour. Res., 29(6), 1697–1708.

    Google Scholar 

  • Tenchev R.T., Li L.Y. & Purkiss J.A. (2001) Finite element analysis of coupled heat and moisture transfer in concrete subjected to fire, Numer. Heat Transfer, 2001, 39(7), 685–710.

    Google Scholar 

  • Tenchev R.T. & Purnell P. (2005) An application of a damage constitutive model to concrete at high temperature and prediction of spalling, Int. J. Solids Struct. 42(26), 6550–6565.

    Google Scholar 

  • Thomas H.R. & Sansom M.R. (1995) Fully coupled analysis of heat, moisture and air transfer in unsaturated soil, J. Eng. Mech., 121(3), 392–405.

    Google Scholar 

  • Torrenti J.-M. et al. (1999) La dégradation des bétons, Hermès (Eds.), Paris.

    Google Scholar 

  • Van Genuchten M. Th. (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Science Society of America, 44, 892–898.

    Google Scholar 

  • Wang K., Jansen D.C. & Shah S.P. (1997) Permeability study of cracked concrete, Cem. Concr. Res. 27 3, pp. 381–393.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fekri Meftah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 RILEM

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meftah, F., Davie, C., Pont, S.D., Millard, A. (2019). Constitutive Parameters. In: Millard, A., Pimienta, P. (eds) Modelling of Concrete Behaviour at High Temperature. RILEM State-of-the-Art Reports, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-030-11995-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11995-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11994-2

  • Online ISBN: 978-3-030-11995-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics