Skip to main content

The \(\phi ^4\) Model in Higher Dimensions

  • Chapter
  • First Online:
A Dynamical Perspective on the ɸ4 Model

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 26))

  • 600 Accesses

Abstract

We analyze solutions of the \(\phi ^4\) model in 2 and 3 spatial dimensions. For infinite domains, the solutions are of the bubble type, they collapse in finite time and give rise to transient waves. In inhomogeneous waveguides with Neumann boundary conditions, kinks will accelerate for narrowing widths and can be reflected if they do not have enough energy to cross the defect. In the presence of dissipation, kinks propagate at a constant radial speed. Dissipative kinks will travel in a smooth waveguide but can be trapped by sharp enlargements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.K. Dodd, J.C. Eilbeck, J.D. Gibbon, H.C. Morris, Solitons and Nonlinear Wave Equations (Academic Press, New York, 1984)

    MATH  Google Scholar 

  2. A.C. Scott, Nonlinear Science, Emergence and Dynamics of Coherent Structures (Oxford University Press, Oxford, 2003)

    MATH  Google Scholar 

  3. H. Berestycki, J. Bouhours, G. Chapuisat, Calc. Var. Partial Differ. Equ. 55, 55 (2016)

    Article  Google Scholar 

  4. D.K. Campbell, J.F. Schonfeld, C.A. Wingate, Phys. D 9, 1 (1983)

    Article  Google Scholar 

  5. J.-G. Caputo, N. Flytzanis, Phys. Rev. A 44, 6219 (1991)

    Article  ADS  Google Scholar 

  6. J.-G. Caputo, M.P. Soerensen, Phys. Rev. E 88, 022915 (2013)

    Article  ADS  Google Scholar 

  7. P.G. Kevrekidis, I. Danaila, J.-G. Caputo, R. Carretero, arXiv:1808.02928

  8. P.L. Christiansen, O.H. Olsen, Phys. Scr. 20, 531–538 (1979)

    Article  ADS  Google Scholar 

  9. P.L. Christiansen, O.H. Olsen, Phys. Lett. A 68, 185 (1978)

    Google Scholar 

  10. P.S. Lomdahl, O.H. Olsen, P.L. Christiansen, Phys. Lett. A 78, 125 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  11. P.L. Christiansen, P.S. Lomdahl, Phys. D 2, 482 (1981)

    Article  MathSciNet  Google Scholar 

  12. M.R. Samuelsen, Phys. Lett. A 74, 21 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  13. J. Geicke, Phys. Lett. A 98, 147 (1983)

    Article  ADS  Google Scholar 

  14. I.L. Bogolubsky, V.G. Makhankov, JETP Lett. 24, 12 (1976)

    ADS  Google Scholar 

  15. B. Piette, W.J. Zakrzewski, Nonlinearity 11, 1103 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  16. J.-G. Caputo, B. Sarels, Phys. Rev. E 84, 041108 (2011)

    Article  ADS  Google Scholar 

  17. A. Barone, G. Paterno, Physics and Applications of the Josephson Effect (Wiley, New York, 1982)

    Book  Google Scholar 

  18. A. Benabdallah, J.-G. Caputo, A.C. Scott, Phys. Rev. B 54, 16139 (1996)

    Article  ADS  Google Scholar 

  19. C. Gorria, Yu.B. Gaididei, M.P. Soerensen, P.L. Christiansen, J.-G. Caputo, Phys. Rev. B 69, 134506 (2004)

    Google Scholar 

  20. G. Carapella, N. Martuciello, G. Costabile, Phys. Rev. B 66, 134531 (2002)

    Article  ADS  Google Scholar 

  21. J.-G. Caputo, D. Dutykh, Phys. Rev. E 90, 022912 (2014)

    Article  ADS  Google Scholar 

  22. D.R. Gulevich, S. Savelev, V.A. Yampolskii, F.V. Kusmartsev, F. Nori, J. Appl. Phys. 104, 064507 (2008)

    Article  ADS  Google Scholar 

  23. Y.B. Zeldovich, D.A. Frank-Kamenetsky, Dokl. Akad. Nauk. SSSR 19, 693 (1938)

    Google Scholar 

  24. J. Xin, SIAM Rev. 42, 161 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  25. D. Dalmas, E. Barthel, D. Vandembroucq, J. Mech. Phys. Solids 57, 446 (2009)

    Article  ADS  Google Scholar 

  26. F. Diovatelli, L. Biferale, S. Chibbaro, A. Puglisi, S. Succi, Phys. Rev. E 78, 036305 (2008)

    Article  ADS  Google Scholar 

  27. J.D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, 3rd edn. (Springer, Heidelberg, Berlin, 2001)

    Google Scholar 

  28. J. Gaudart, O. Touré, N. Dessay, A. Dicko, S. Ranque, L. Forest, J. Demongeot, O.K. Doumbo, Malar. J. 8, 61 (2009)

    Article  Google Scholar 

  29. J. Bouhours, Ph.D. Thesis, Université Pierre et Marie Curie - Paris VI, 2014. https://tel.archives-ouvertes.fr/tel-01070608

Download references

Acknowledgements

The author thanks the CRIANN computing center for the use of its facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Guy Caputo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Caputo, JG. (2019). The \(\phi ^4\) Model in Higher Dimensions. In: Kevrekidis, P., Cuevas-Maraver, J. (eds) A Dynamical Perspective on the ɸ4 Model. Nonlinear Systems and Complexity, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-030-11839-6_11

Download citation

Publish with us

Policies and ethics