Skip to main content

Aggressive Prolactin-Secreting Pituitary Adenomas and Carcinomas

  • Chapter
  • First Online:
Prolactin Disorders

Part of the book series: Contemporary Endocrinology ((COE))

  • 574 Accesses

Abstract

Aggressive prolactinomas (PRL-omas) and carcinomas comprise a rare but challenging subset of pituitary tumors. Firstly, the holistic definition that reliably identifies these tumors in a prospective manner remains elusive. Although comprehensive evaluation of patient gender, age, local invasiveness, treatment responses, and histopathological features may be informative to assess the potential for PRL-oma aggressiveness, a definitive diagnosis cannot be made until disease progression is observed despite standard therapy, which typically includes medical and surgical therapy. The failed early diagnosis of these aggressive PRL-omas may delay the initiation of intensive stepwise multimodal treatments and lessen ultimate therapeutic outcomes. Secondly, even though current therapeutic options for aggressive prolactinomas are suboptimal in some cases, due to the rarity of this disease entity, large-scale clinic trials and prospective studies are impractical. Most novel therapies in this subset of tumors are based on case reports or small series, which greatly reduces their validity and limits recommendations. Randomized prospective multicenter studies would be a major advantage to identify reliable predictive diagnostic biomarkers and explore novel efficacious treatment options for these tumors. These could perhaps be conducted on a global basis though funding such an effort is a limiting factor. This chapter provides an overview of current knowledge regarding the various tools used to diagnose aggressive prolactin-secreting tumors and discusses both established and emerging therapeutic options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gittleman H, Ostrom QT, Farah PD, Ondracek A, Chen Y, Wolinsky Y, et al. Descriptive epidemiology of pituitary tumors in the United States, 2004–2009. J Neurosurg. 2014;121(3):527–35.

    Article  PubMed  Google Scholar 

  2. Molitch ME. Diagnosis and treatment of pituitary adenomas: a review. JAMA. 2017;317(5):516–24.

    Article  PubMed  Google Scholar 

  3. Bologna Z, Teoh J-p, Bayoumi AS, Tang Y, Kim I-m. Biased G protein-coupled receptor signaling: new player in modulating physiology and pathology. Biomol Ther. 2017;25(1):12–25.

    Article  Google Scholar 

  4. Wolfsberger S, Knosp E. Comments on the WHO 2004 classification of pituitary tumors. Acta Neuropathol. 2006;111(1):66–7.

    Article  PubMed  Google Scholar 

  5. Lopes MBS. The 2017 World Health Organization classification of tumors of the pituitary gland: a summary. Acta Neuropathol. 2017;134(4):521–35.

    Article  CAS  PubMed  Google Scholar 

  6. Casanueva FF, Molitch ME, Schlechte JA, Abs R, Bonert V, Bronstein MD, et al. Guidelines of the Pituitary Society for the diagnosis and management of prolactinomas. Clin Endocrinol. 2006;65(2):265–73.

    Article  Google Scholar 

  7. J-R ML. From resistant to aggressive and malignant prolactinomas: a translational approach. J Endocr Disord. 2014;1:1012.

    Google Scholar 

  8. Gillam MP, Middler S, Freed DJ, Molitch ME. The novel use of very high doses of cabergoline and a combination of testosterone and an aromatase inhibitor in the treatment of a giant prolactinoma. J Clin Endocrinol Metab. 2002;87(10):4447–51.

    Article  CAS  PubMed  Google Scholar 

  9. Tanase C, Ogrezeanu I, Badiu C. Molecular pathology of pituitary adenomas: Elsevier Science (London); 2011

    Google Scholar 

  10. Gürlek A, Karavitaki N, Ansorge O, Wass JAH. What are the markers of aggressiveness in prolactinomas? Changes in cell biology, extracellular matrix components, angiogenesis and genetics. Eur J Endocrinol. 2007;156(2):143–53.

    Article  PubMed  CAS  Google Scholar 

  11. Heaney A. Management of aggressive pituitary adenomas and pituitary carcinomas. J Neuro-Oncol. 2014;117(3):459–68.

    Article  CAS  Google Scholar 

  12. Kovacs K, Rotondo F, Horvath E, Syro LV, Di Ieva A, Cusimano MD, et al. Letter to the editor. Endocr Pathol. 2015;26(1):93–4.

    Article  PubMed  Google Scholar 

  13. Heaney AP. Pituitary carcinoma: difficult diagnosis and treatment. J Clin Endocrinol Metab. 2011;96(12):3649–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Raverot G, Burman P, McCormack AI, Heaney Ap, Petersenn S, Popovic V, et al. European Society of Endocrinology clinical practice guidelines for the management of aggressive pituitary tumours and carcinomas. Eur J Endocrinol. 2018;178(1):G1-G24.

    Article  CAS  PubMed  Google Scholar 

  15. Caccavelli L, Feron F, Morange I, Rouer E, Benarous R, Dewailly D, et al. Decreased expression of the two D2 dopamine receptor isoforms in bromocriptine-resistant Prolactinomas. Neuroendocrinology. 1994;60(3):314–22.

    Article  CAS  PubMed  Google Scholar 

  16. Shimazu S, Shimatsu A, Yamada S, Inoshita N, Nagamura Y, Usui T, et al. Resistance to dopamine agonists in prolactinoma is correlated with reduction of dopamine D2 receptor long isoform mRNA levels. Eur J Endocrinol. 2012;166(3):383–90.

    Article  CAS  PubMed  Google Scholar 

  17. Recouvreux MV, Camilletti MA, Rifkin DB, Díaz-Torga G. The pituitary TGFβ1 system as a novel target for the treatment of resistant prolactinomas. J Endocrinol. 2016;228(3):R73–83.

    Article  CAS  PubMed  Google Scholar 

  18. Peverelli E, Treppiedi D, Giardino E, Vitali E, Lania AG, Mantovani G. Dopamine and somatostatin analogues resistance of pituitary tumors: focus on cytoskeleton involvement. Front Endocrinol. 2015;6:187.

    Article  Google Scholar 

  19. Pellegrini I, Rasolonjanahary R, Gunz G, Bertrand P, Delivet S, Jedynak CP, et al. Resistance to bromocriptine in prolactinomas. J Clin Endocrinol Metab. 1989;69(3):500–9.

    Article  CAS  PubMed  Google Scholar 

  20. Hettinger J, Liu X, Hudson M, Lee A, Cohen I, Michaelis RC, et al. DRD2 and PPP1R1B (DARPP-32) polymorphisms independently confer increased risk for autism spectrum disorders and additively predict affected status in male-only affected sib-pair families. Behav Brain Funct. 2012;8:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu ZB, Zheng WM, Su ZP, Chen Y, Wu JS, Wang CD, et al. Expression of D2RmRNA isoforms and ERmRNA isoforms in prolactinomas: correlation with the response to bromocriptine and with tumor biological behavior. J Neuro-Oncol. 2010;99(1):25–32.

    Article  CAS  Google Scholar 

  22. Filopanti M, Barbieri AM, Angioni AR, Colao A, Gasco V, Grottoli S, et al. Dopamine D2 receptor gene polymorphisms and response to cabergoline therapy in patients with prolactin-secreting pituitary adenomas. Pharm J. 2008;8:357.

    CAS  Google Scholar 

  23. Recouvreux MV, Guida MC, Rifkin DB, Becu-Villalobos D, Díaz-Torga G. Active and total transforming growth factor-β1 are differentially regulated by dopamine and estradiol in the pituitary. Endocrinology. 2011;152(7):2722–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li Z, Liu Q, Li C, Zong X, Bai J, Wu Y, et al. The role of TGF-β/Smad signaling in dopamine agonist-resistant prolactinomas. Mol Cell Endocrinol. 2015;402:64–71.

    Article  CAS  PubMed  Google Scholar 

  25. Gasco V, Grottoli S. Physiopathology, diagnosis, and treatment of hyperprolactinemia. In: Casanueva FF, Ghigo E, editors. Hypothalamic-pituitary diseases. Cham: Springer International Publishing; 2018. p. 433–71.

    Chapter  Google Scholar 

  26. Verhelst J, Abs R, Maiter D, van den Bruel A, Vandeweghe M, Velkeniers B, et al. Cabergoline in the treatment of hyperprolactinemia: a study in 455 patients. J Clin Endocrinol Metab. 1999;84(7):2518–22.

    Article  CAS  PubMed  Google Scholar 

  27. Yildirim Simsir I, Kocabas G, Sahin SB, Erdogan M, Sevki C, Saygili F, et al. A case of an ectopic prolactinoma. Gynecol Endocrinol. 2012;28(2):148–9.

    Article  CAS  Google Scholar 

  28. Walker JD, Grossman A, Anderson JV, Ur E, Trainer PJ, Benn J, et al. Malignant prolactinoma with extracranial metastases: a report of three cases. Clin Endocrinol. 1993;38(4):411–9.

    Article  CAS  Google Scholar 

  29. Kars M, Roelfsema F, Romijn JA, Pereira AM. Malignant prolactinoma: case report and review of the literature. Eur J Endocrinol. 2006;155(4):523–34.

    Article  CAS  PubMed  Google Scholar 

  30. Day PF, Glerean M, Lovazzano S, Pietrani M, Christiansen S, Balzaretti M, et al. Gender differences in macroprolactinomas: study of clinical features, outcome of patients and ki-67 expression in tumor tissue. Front Horm Res. Pituitary Today II. Karger Publishers;2010;38:50–8.

    Google Scholar 

  31. Biller B, Alexander JM, Zervas NT, Hedley-Whyte ET, Arnold A, Klibanski A. Clonal origins of adrenocorticotropin-secreting pituitary tissue in Cushing’s disease. J Clin Endocrinol Metab. 1992;75(5):1303–9.

    CAS  PubMed  Google Scholar 

  32. Stratakis CA, Tichomirowa MA, Boikos S, Azevedo MF, Lodish M, Martari M, et al. The role of germline AIP, MEN1, PRKAR1A, CDKN1B and CDKN2C mutations in a large cohort of children and adolescents with pituitary adenomas. Clin Genet. 2010;78(5):457–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dong Q, Debelenko LV, Chandrasekharappa SC, Emmert-Buck MR, Zhuang Z, Guru SC, et al. Loss of heterozygosity at 11q13: analysis of pituitary tumors, lung carcinoids, lipomas, and other uncommon tumors in subjects with familial multiple endocrine neoplasia type 1. J Clin Endocrinol Metab. 1997;82(5):1416–20.

    Article  CAS  PubMed  Google Scholar 

  34. Bates AS, Farrell WE, Bicknell EJ, McNicol AM, Talbot AJ, Broome JC, et al. Allelic deletion in pituitary adenomas reflects aggressive biological activity and has potential value as a prognostic marker 1. J Clin Endocrinol Metab. 1997;82(3):818–24.

    CAS  PubMed  Google Scholar 

  35. Buchfelder M. Management of aggressive pituitary adenomas: current treatment strategies. Pituitary. 2009;12(3):256–60.

    Article  PubMed  Google Scholar 

  36. Primeau V, Raftopoulos C, Maiter D. Outcomes of transsphenoidal surgery in prolactinomas: improvement of hormonal control in dopamine agonist-resistant patients. Eur J Endocrinol. 2012;166(5):779–86.

    Article  CAS  PubMed  Google Scholar 

  37. Halvorsen H, Ramm-Pettersen J, Josefsen R, Rønning P, Reinlie S, Meling T, et al. Surgical complications after transsphenoidal microscopic and endoscopic surgery for pituitary adenoma: a consecutive series of 506 procedures. Acta Neurochir. 2014;156(3):441–9.

    Article  PubMed  Google Scholar 

  38. Chatzellis E, Alexandraki KI, Androulakis II, Kaltsas G. Aggressive pituitary tumors. Neuroendocrinology. 2015;101(2):87–104.

    Article  CAS  PubMed  Google Scholar 

  39. Raverot G, Burman P, McCormack AI, Heaney A, Petersenn S, Popovic V, et al. European Society of Endocrinology clinical practice guidelines for the management of aggressive pituitary tumours and carcinomas. Eur J Endocrinol. 2017;178(1):G1–G24. https://doi.org/10.1530/EJE-17-0796.

    Article  PubMed  Google Scholar 

  40. Rowe J, Grainger A, Walton L, Silcocks P, Radatz M, Kemeny A. Risk of malignancy after gamma knife stereotactic radiosurgery. Neurosurgery. 2007;60(1):60–6.

    Article  PubMed  Google Scholar 

  41. Kaltsas GA, Mukherjee JJ, Plowman PN, Monson JP, Grossman AB, Besser GM. The role of cytotoxic chemotherapy in the management of aggressive and malignant pituitary tumors. J Clin Endocrinol Metab. 1998;83(12):4233–8.

    Article  CAS  PubMed  Google Scholar 

  42. Lim S, Shahinian H, Maya MM, Yong W, Heaney AP. Temozolomide: a novel treatment for pituitary carcinoma. Lancet Oncol. 2006;7(6):518–20.

    Article  PubMed  Google Scholar 

  43. Ramirez Y, Weatherbee J, Wheelhouse R, Ross A. Glioblastoma multiforme therapy and mechanisms of resistance. Pharmaceuticals. 2013;6(12):1475.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Yoshimoto K, Mizoguchi M, Hata N, Murata H, Hatae R, Amano T, et al. Complex DNA repair pathways as possible therapeutic targets to overcome temozolomide resistance in glioblastoma. Front Oncol. 2012;2:186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zacharia BE, Gulati AP, Bruce JN, Carminucci AS, Wardlaw SL, Siegelin M, et al. High response rates and prolonged survival in patients with Corticotroph pituitary tumors and refractory Cushing disease from Capecitabine and Temozolomide (CAPTEM) a case series. Neurosurgery. 2014;74(4):E447–E55.

    Article  PubMed  Google Scholar 

  46. Pernicone P, Scheithauer B, Sebo T, Kovacs K, Horvath E, Young W Jr, et al. Pituitary carcinoma: a clinicopathologic study of 15 cases. Cancer. 1997;79(4):804.

    Article  CAS  PubMed  Google Scholar 

  47. Chatal J, Le Bodic M, Kraeber-Bodere F, Rousseau C, Resche I. Nuclear medicine applications for neuroendocrine tumors. World J Surg. 2000;24(11):1285–9.

    Article  CAS  PubMed  Google Scholar 

  48. Wängberg B, Nilsson O, Johanson V, Kölby L, Forssell-Aronsson E, Andersson P, et al. Somatostatin receptors in the diagnosis and therapy of neuroendocrine tumors. Oncologist. 1997;2(1):50–8.

    PubMed  Google Scholar 

  49. Capello A, Krenning EP, Breeman WA, Bernard BF, de Jong M. Peptide receptor radionuclide therapy in vitro using [111In-DTPA0] octreotide. J Nucl Med. 2003;44(1):98–104.

    CAS  PubMed  Google Scholar 

  50. Baldari S, Ferrau F, Alafaci C, Herberg A, Granata F, Militano V, et al. First demonstration of the effectiveness of peptide receptor radionuclide therapy (PRRT) with 111In-DTPA-octreotide in a giant PRL-secreting pituitary adenoma resistant to conventional treatment. Pituitary. 2012;15(1):57–60.

    Article  Google Scholar 

  51. Komor J, Reubi JC, Christ ER. Peptide receptor radionuclide therapy in a patient with disabling non-functioning pituitary adenoma. Pituitary. 2014;17(3):227–31.

    Article  PubMed  Google Scholar 

  52. Waligórska-Stachura J, Gut P, Sawicka-Gutaj N, Liebert W, Gryczyńska M, Baszko-Błaszyk D, et al. Growth hormone–secreting macroadenoma of the pituitary gland successfully treated with the radiolabeled somatostatin analog 90Y-DOTATATE: case report. J Neurosurg. 2016;125(2):346–9.

    Article  PubMed  Google Scholar 

  53. Maclean J, Aldridge M, Bomanji J, Short S, Fersht N. Peptide receptor radionuclide therapy for aggressive atypical pituitary adenoma/carcinoma: variable clinical response in preliminary evaluation. Pituitary. 2014;17(6):530–8.

    Article  CAS  PubMed  Google Scholar 

  54. Murdoch GH, Potter E, Nicolaisen AK, Evans RM, Rosenfeld MG. Epidermal growth factor rapidly stimulates prolactin gene transcription. Nature. 1982;300:192.

    Article  CAS  PubMed  Google Scholar 

  55. Jaffrain-Rea M, Petrangeli E, Lubrano C, Minniti G, Di Stefano D, Sciarra F, et al. Epidermal growth factor binding sites in human pituitary macroadenomas. J Endocrinol. 1998;158(3):425–33.

    Article  CAS  PubMed  Google Scholar 

  56. Grávalos C, Cassinello J, Fernández-Rañada I, Holgado E. Role of tyrosine kinase inhibitors in the treatment of advanced colorectal cancer. Clin Colorectal Cancer. 2007;6(10):691–9.

    Article  PubMed  Google Scholar 

  57. Liu X, Kano M, Araki T, Cooper O, Fukuoka H, Tone Y, et al. ErbB receptor-driven prolactinomas respond to targeted Lapatinib treatment in female transgenic mice. Endocrinology. 2015;156(1):71–9.

    Article  PubMed  CAS  Google Scholar 

  58. Hervent A-S, De Keulenaer GW. Molecular mechanisms of cardiotoxicity induced by ErbB receptor inhibitor cancer therapeutics. Int J Mol Sci. 2012;13(10):12268–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Medina PJ, Goodin S. Lapatinib: a dual inhibitor of human epidermal growth factor receptor tyrosine kinases. Clin Ther. 2008;30(8):1426–47.

    Article  CAS  PubMed  Google Scholar 

  60. Cooper O, Mamelak A, Bannykh S, Carmichael J, Bonert V, Lim S, et al. Prolactinoma ErbB receptor expression and targeted therapy for aggressive tumors. Endocrine. 2014;46(2):318–27.

    Article  CAS  PubMed  Google Scholar 

  61. Cristina C, Luque GM, Demarchi G, Lopez Vicchi F, Zubeldia-Brenner L, Perez Millan MI, et al. Angiogenesis in pituitary adenomas: human studies and new mutant mouse models. Int J Endocrinol. 2014;2014:608497.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Cristina C, Perez-Millan MI, Luque G, Dulce RA, Sevlever G, Berner SI, et al. VEGF and CD31 association in pituitary adenomas. Endocr Pathol. 2010;21(3):154–60.

    Article  CAS  PubMed  Google Scholar 

  63. Onofri C, Theodoropoulou M, Losa M, Uhl E, Lange M, Arzt E, et al. Localization of vascular endothelial growth factor (VEGF) receptors in normal and adenomatous pituitaries: detection of a non-endothelial function of VEGF in pituitary tumours. J Endocrinol. 2006;191(1):249–61.

    Article  CAS  PubMed  Google Scholar 

  64. Asa SL, Kelly MA, Grandy DK, Low MJ. Pituitary lactotroph adenomas develop after prolonged lactotroph hyperplasia in dopamine D2 receptor-deficient mice. Endocrinology. 1999;140(11):5348–55.

    Article  CAS  PubMed  Google Scholar 

  65. Cristina C, Díaz-Torga G, Baldi A, Góngora A, Rubinstein M, Low MJ, et al. Increased pituitary vascular endothelial growth factor-a in dopaminergic D2 receptor knockout female mice. Endocrinology. 2005;146(7):2952–62.

    Article  CAS  PubMed  Google Scholar 

  66. Luque GM, Perez-Millán MI, Ornstein AM, Cristina C, Becu-Villalobos D. Inhibitory effects of antivascular endothelial growth factor strategies in experimental dopamine-resistant prolactinomas. J Pharmacol Exp Ther. 2011;337(3):766–74.

    Article  CAS  PubMed  Google Scholar 

  67. Korsisaari N, Ross J, Wu X, Kowanetz M, Pal N, Hall L, et al. Blocking vascular endothelial growth factor-a inhibits the growth of pituitary adenomas and lowers serum prolactin level in a mouse model of multiple endocrine neoplasia type 1. Clin Cancer Res. 2008;14(1):249–58.

    Article  CAS  PubMed  Google Scholar 

  68. Ferrara N, Hillan KJ, Novotny W. Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun. 2005;333(2):328–35.

    Article  CAS  PubMed  Google Scholar 

  69. Poulsen HS, Grunnet K, Sorensen M, Olsen P, Hasselbalch B, Nelausen K, et al. Bevacizumab plus irinotecan in the treatment patients with progressive recurrent malignant brain tumours. Acta Oncol. 2009;48(1):52–8.

    Article  CAS  PubMed  Google Scholar 

  70. Li J-L, Harris AL. Crosstalk of VEGF and Notch pathways in tumour angiogenesis: therapeutic implications. Front Biosci (Landmark Ed). 2009;14:3094–110.

    Article  CAS  Google Scholar 

  71. Heldin C-H. Targeting the PDGF signaling pathway in tumor treatment. Cell Commun Signal. 2013;11(1):97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Dey D, Nandhini G, Rajkumar K. Fibroblast growth factors and their role in disease and therapy. SRM J R Dent Sci. 2015;6(1):41–7.

    Article  Google Scholar 

  73. Babina IS, Turner NC. Advances and challenges in targeting FGFR signalling in cancer. Nat Rev Cancer. 2017;17:318.

    Article  CAS  PubMed  Google Scholar 

  74. Gospodarowicz D. Purification of a fibroblast growth factor from bovine pituitary. J Biol Chem. 1975;250(7):2515–20.

    CAS  PubMed  Google Scholar 

  75. Ferrara N, Schweigerer L, Neufeld G, Mitchell R, Gospodarowicz D. Pituitary follicular cells produce basic fibroblast growth factor. Proc Natl Acad Sci. 1987;84(16):5773–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Baird A, Mormède P, Ying SY, Wehrenberg WB, Ueno N, Ling N, et al. A nonmitogenic pituitary function of fibroblast growth factor: regulation of thyrotropin and prolactin secretion. Proc Natl Acad Sci U S A. 1985;82(16):5545–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chae YK, Ranganath K, Hammerman PS, Vaklavas C, Mohindra N, Kalyan A, et al. Inhibition of the fibroblast growth factor receptor (FGFR) pathway: the current landscape and barriers to clinical application. Oncotarget. 2017;8(9):16052–74.

    Article  PubMed  Google Scholar 

  78. Yuan T, Cantley L. PI3K pathway alterations in cancer: variations on a theme. Oncogene. 2008;27(41):5497–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006;7(8):606–19.

    Article  CAS  PubMed  Google Scholar 

  80. Gorshtein A, Rubinfeld H, Kendler E, Theodoropoulou M, Cerovac V, Stalla GK, et al. Mammalian target of rapamycin inhibitors rapamycin and RAD001 (everolimus) induce anti-proliferative effects in GH-secreting pituitary tumor cells in vitro. Endocr Relat Cancer. 2009;16(3):1017–27.

    Article  CAS  PubMed  Google Scholar 

  81. Monsalves E, Juraschka K, Tateno T, Agnihotri S, Asa SL, Ezzat S, et al. The PI3K/AKT/mTOR pathway in the pathophysiology and treatment of pituitary adenomas. Endocr Relat Cancer. 2014;21(4):R331–R44.

    Article  CAS  PubMed  Google Scholar 

  82. Zatelli MC, Minoia M, Filieri C, Tagliati F, Buratto M, Ambrosio MR, et al. Effect of everolimus on cell viability in nonfunctioning pituitary adenomas. J Clin Endocrinol Metab. 2010;95(2):968–76.

    Article  CAS  PubMed  Google Scholar 

  83. Cerovac V, Monteserin-Garcia J, Rubinfeld H, Buchfelder M, Losa M, Florio T, et al. The somatostatin analogue octreotide confers sensitivity to rapamycin treatment on pituitary tumor cells. Cancer Res. 2010;70(2):666–74.

    Article  CAS  PubMed  Google Scholar 

  84. Jouanneau E, Wierinckx A, Ducray F, Favrel V, Borson-Chazot F, Honnorat J, et al. New targeted therapies in pituitary carcinoma resistant to temozolomide. Pituitary. 2012;15(1):37–43.

    Article  CAS  PubMed  Google Scholar 

  85. Chanal M, Chevallier P, Raverot V, Fonteneau G, Lucia K, Monteserin Garcia JL, et al. Differential effects of PI3K and dual PI3K/mTOR inhibition in rat prolactin-secreting pituitary tumors. Mol Cancer Ther. 2016;15(6):1261–70.

    Article  CAS  PubMed  Google Scholar 

  86. Dworakowska D, Wlodek E, Leontiou CA, Igreja S, Cakir M, Teng M, et al. Activation of RAF/MEK/ERK and PI3K/AKT/mTOR pathways in pituitary adenomas and their effects on downstream effectors. Endocr Relat Cancer. 2009;16(4):1329–38.

    Article  CAS  PubMed  Google Scholar 

  87. Petiti JP, Sosa LV, Sabatino ME, Vaca AM, Gutiérrez S, De Paul AL, et al. Involvement of MEK/ERK1/2 and PI3K/Akt pathways in the refractory behavior of GH3B6 pituitary tumor cells to the inhibitory effect of TGFβ1. Endocrinology. 2015;156(2):534–47.

    Article  PubMed  CAS  Google Scholar 

  88. Booth AK, Gutierrez-Hartmann A. Signaling pathways regulating pituitary lactotrope homeostasis and tumorigenesis. In: Diakonova PM, editor. Recent advances in prolactin research. Cham: Springer International Publishing; 2015. p. 37–59.

    Google Scholar 

  89. Tubbs R, et al. Does the maxillary division of the trigeminal nerve traverse the cavernous sinus? An anatomical study and review of the literature. Surg Radiol Anat. 2008;30(1):37–40.

    Article  PubMed  Google Scholar 

  90. Heaney AP, Melmed S. Molecular targets in pituitary tumours. Nat Rev Cancer. 2004;4:285.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony P. Heaney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, D., Heaney, A.P. (2019). Aggressive Prolactin-Secreting Pituitary Adenomas and Carcinomas. In: Tritos, N., Klibanski, A. (eds) Prolactin Disorders. Contemporary Endocrinology. Humana, Cham. https://doi.org/10.1007/978-3-030-11836-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11836-5_13

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-11835-8

  • Online ISBN: 978-3-030-11836-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics