Skip to main content

Drug Discovery from Complex Mixtures: Serendipity, Screening, and Characterization

  • Chapter
  • First Online:
The Science and Regulations of Naturally Derived Complex Drugs

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 32))

  • 678 Accesses

Abstract

Natural products mixtures, as originally sourced in nature, are encountered in complex matrices that may contain useful active components at low concentrations, but also a number of unrelated molecular components, often in larger quantities. To detect and identify active principles can be challenging and depends on the process of sample preparation, along with the selection, design, and operation of the relevant assay. Sample preparation may entail extraction, chromatography, or some other concentration/purification step(s). The assays chosen may range from simple isolated enzyme assays, where the mixture is tested against a particular target, to phenotypic type assays where the growth, viability, or function of a cell or a tissue is being monitored. And in more sophisticated approaches, cellular systems may be so studied—even engineered for optimization—to incorporate a specific target-based screen in a cellular context. In many drug discovery settings, these assays have been miniaturized to enhance efficiency and throughput. Identification of “hits” (complex mixtures positive for the activity in question) can allow further purification of the mixture to “track” the active principle(s) and then to structurally identify them using chemical means. In some programs, the screening and chemistry work can be combined in integrated operations to maximize efficiency. Because of the complexity of cellular assay systems, and the vast complexity of natural products, many “serendipitous” discoveries have been encountered, identifying new chemical classes or new modes of biological action for known compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cragg GM, Newman DJ, Snader KM. Natural products in drug discovery and development. J Nat Prod. 1997;60:52–60.

    Article  CAS  PubMed  Google Scholar 

  2. Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod. 2012;75:311–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79:629–61.

    Article  CAS  PubMed  Google Scholar 

  4. Cordell GA. Ecopharmacognosy and the responsibilities of natural product research to sustainability. Phytochem Lett. 2015;11:332–46.

    Article  Google Scholar 

  5. Cragg GM, Grothaus PG, Newman DJ. Impact of natural products on developing new anti-cancer agents. Chem Rev. 2009;109:3012–43.

    Article  CAS  PubMed  Google Scholar 

  6. Tyler VE. Pharmacognosy. Philadelphia, PA: Lea & Febiger; 1988.

    Google Scholar 

  7. Hostettmann K, Potterat O, Wolfender JL. The potential of higher plants as a source of new drugs. Chimia. 1998;52:10–7.

    CAS  Google Scholar 

  8. Houghton PJ. Products of chemistry: old yet new—pharmaceuticals from plants. J Chem Educ. 2001;78:175–84.

    Article  CAS  Google Scholar 

  9. Faulkner DJ. Marine natural products. Nat Prod Rep. 2001;18:1–49.

    Article  CAS  PubMed  Google Scholar 

  10. Leal MC, Puga J, Serodio J, Gomes NC, Calado R. Trends in the discovery of new marine natural products from invertebrates over the last two decades–where and what are we bioprospecting? PLoS ONE. 2012;7:e30580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Trindade M, van Zyl LJ, Navarro-Fernandez J, Abd Elrazak A. Targeted metagenomics as a tool to tap into marine natural product diversity for the discovery and production of drug candidates. Frontiers in microbiology. 2015;6:890.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Demain AL. Microbial natural products: a past with a future. Spec Publ—R Soc Chem. 2000;257:3–16.

    CAS  Google Scholar 

  13. Lewis K. New approaches to antimicrobial discovery. Biochem. Pharmacol. 2016.

    Google Scholar 

  14. Monciardini P, Iorio M, Maffioli S, Sosio M, Donadio S. Discovering new bioactive molecules from microbial sources. Microb Biotechnol. 2014;7:209–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ceske L, Kaufman P. How and why these compounds are synthesized by plants. In: Natural products from plants. New York: CRC Press; 1999.

    Google Scholar 

  16. Harris ES, et al. Traditional medicine collection tracking system (TM-CTS): a database for ethnobotanically driven drug-discovery programs. J Ethnopharmacol. 2011;135:590–3.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Techen N, Parveen I, Pan Z, Khan IA. DNA barcoding of medicinal plant material for identification. Curr Opin Biotechnol. 2014;25:103–10.

    Article  CAS  PubMed  Google Scholar 

  18. da Vinci L. (1500s).

    Google Scholar 

  19. Kinghorn AD, et al. Discovery of anticancer agents of diverse natural origin. Anticancer Res. 2016;36:5623–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Barka EA, et al. Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev. 2016;80:1–43.

    Article  PubMed  Google Scholar 

  21. Newman DJ. Predominately uncultured microbes as sources of bioactive agents. Front Microbiol. 2016;7:1832.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Banik JJ, Brady SF. Recent application of metagenomic approaches toward the discovery of antimicrobials and other bioactive small molecules. Curr Opin Microbiol. 2010;13:603–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Anyaogu DC, Mortensen UH. Heterologous production of fungal secondary metabolites in Aspergilli. Front Microbiol. 2015;6:77.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gazzaneo LR, et al. Heterologous expression systems for plant defensin expression: examples of success and pitfalls. Curr Protein Pept Sci. 2016.

    Google Scholar 

  25. Moses T, Pollier J, Thevelein JM, Goossens A. Bioengineering of plant (tri)terpenoids: from metabolic engineering of plants to synthetic biology in vivo and in vitro. New Phytol. 2013;200:27–43.

    Article  CAS  PubMed  Google Scholar 

  26. Smanski MJ, et al. Synthetic biology to access and expand nature’s chemical diversity. Nat Rev Microbiol. 2016;14:135–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Trosset JY, Carbonell P. Synthetic biology for pharmaceutical drug discovery. Drug Des Devel Ther. 2015;9:6285–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Serturner FW. Gilbert’s Annalen d. Physik. 1817;25:56.

    Article  Google Scholar 

  29. Luo Y, Cobb RE, Zhao H. Recent advances in natural product discovery. Curr Opin Biotechnol. 2014;30:230–7.

    Article  CAS  PubMed  Google Scholar 

  30. Ramadhar TR, Beemelmanns C, Currie CR, Clardy J. Bacterial symbionts in agricultural systems provide a strategic source for antibiotic discovery. The Journal of antibiotics. 2014;67:53–8.

    Article  CAS  PubMed  Google Scholar 

  31. Giaever G, Nislow C. The yeast deletion collection: a decade of functional genomics. Genetics. 2014;197:451–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wolfender JL, Marti G, Thomas A, Bertrand S. Current approaches and challenges for the metabolite profiling of complex natural extracts. J Chromatogr A. 2015;1382:136–64.

    Article  CAS  PubMed  Google Scholar 

  33. Henrich CJ, Beutler JA. Matching the power of high throughput screening to the chemical diversity of natural products. Nat Prod Rep. 2013;30:1284–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fallarero A, Hanski L, Vuorela P. How to translate a bioassay into a screening assay for natural products: general considerations and implementation of antimicrobial screens. Planta Med. 2014;80:1182–99.

    Article  CAS  PubMed  Google Scholar 

  35. Bisson J, et al. Can invalid bioactives undermine natural product-based drug discovery? J Med Chem. 2016;59:1671–90.

    Article  CAS  PubMed  Google Scholar 

  36. Baell JB. Feeling nature’s PAINS: natural products, natural product drugs, and pan assay interference compounds (PAINS). J Nat Prod. 2016;79:616–28.

    Article  CAS  PubMed  Google Scholar 

  37. Winter JM, Behnken S, Hertweck C. Genomics-inspired discovery of natural products. Curr Opin Chem Biol. 2011;15:22–31.

    Article  CAS  PubMed  Google Scholar 

  38. Wagner H. Synergy research: approaching a new generation of phytopharmaceuticals. Fitoterapia. 2011;82:34–7.

    Article  PubMed  Google Scholar 

  39. Teichert RW, Schmidt EW, Olivera BM. Constellation pharmacology: a new paradigm for drug discovery. Annu Rev Pharmacol Toxicol. 2015;55:573–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ciesla L, Moaddel R. Comparison of analytical techniques for the identification of bioactive compounds from natural products. Nat Prod Rep. 2016;33:1131–45.

    Article  CAS  PubMed  Google Scholar 

  41. Tu Y, et al. Automated high-throughput system to fractionate plant natural products for drug discovery. J Nat Prod. 2010;73:751–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang J, et al. UPLC-MS-ELSD-PDA as a powerful dereplication tool to facilitate compound identification from small-molecule natural product libraries. J Nat Prod. 2014;77:902–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang J, et al. Diversity-oriented natural product platform identifies plant constituents targeting Plasmodium falciparum. Malar J. 2016;15:270.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ravu RR, et al. LC-MS- and (1)H NMR spectroscopy-guided identification of antifungal diterpenoids from Sagittaria latifolia. J Nat Prod. 2015;78:2255–9.

    Article  CAS  PubMed  Google Scholar 

  45. Watkins R, Wu L, Zhang C, Davis RM, Xu B. Natural product-based nanomedicine: recent advances and issues. Int J Nanomedicine. 2015;10:6055–74.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry A. Walker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jacob, M., Li, XC., Walker, L.A. (2019). Drug Discovery from Complex Mixtures: Serendipity, Screening, and Characterization. In: Sasisekharan, R., Lee, S., Rosenberg, A., Walker, L. (eds) The Science and Regulations of Naturally Derived Complex Drugs. AAPS Advances in the Pharmaceutical Sciences Series, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-11751-1_17

Download citation

Publish with us

Policies and ethics