Skip to main content

Heparin Contamination and Issues Related to Raw Materials and Controls

  • Chapter
  • First Online:
The Science and Regulations of Naturally Derived Complex Drugs

Abstract

Heparin is a century-old polypharmacological drug critical for the practice of modern medicine. In recent years, there have been a number of issues arising in the preparation of heparin from food animal tissues. The most severe problem was the adulteration of porcine intestinal heparin with a toxic semisynthetic look-alike polysaccharide, oversulfated chondroitin sulfate, which resulted in a number of patient deaths. Since this crisis, regulatory and analytical control of heparin has been markedly improved; new challenges in securing the heparin supply chain have prompted the reintroduction of heparins from new animal sources . In future, the introduction of bioengineered heparins might offer better approaches for securing this critical drug .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Linhardt RJ. Heparin: an important drug enters its seventh decade. Chem Ind. 1991;2:45–50.

    Google Scholar 

  2. Howell WH. Harvey lectures, 1916–17, Ser. 12.

    Google Scholar 

  3. United States Pharmacopeial Convention, USP37. Official Mono- graph, Heparin Sodium, D. Molecular weight determinations. Rockville, MD: United States Pharmacopeial Convention; 2014:3224.

    Google Scholar 

  4. Fu L, Suflita M, Linhardt RJ. Bioengineered heparins and heparan sulfates. Adv Drug Deliv Rev. 2016;97:237–49.

    Google Scholar 

  5. Razi N, Kreuger J, Lay L, Russo G, Panza L, Lindahl B, Lindahl U. Identification of O-sulphate substituents on D-glucuronic acid units in heparin-related glycosaminoglycans using novel synthetic disaccharide standards. Glycobiology. 1995;5(8):807–11.

    Google Scholar 

  6. Mourier PAJ, Guichard OY, Herman F, Viskov C. Heparin sodium compliance to USP monograph: structural elucidation of an atypical 2.18 ppm NMR signal. J Pharm Biomed Anal. 2012;67–68:169–174.

    Google Scholar 

  7. Beccati D, Roy S, Yu F, Gunay NS, Linhardt RJ, Capila I, Venkataraman G. Identification of a novel structure in heparin generated by potassium permanganate oxidation. Carbohydr Polym. 2010;82:699–705.

    Google Scholar 

  8. Jasejar M, Rej RN, Sauriol F, Perlin Can AS. Novel regio- and stereoselective modifications of heparin in alkaline solution. Nuclear magnetic resonance spectroscopic evidence. J Chem. 1989;67:1449.

    Google Scholar 

  9. Kolset SO, Pejler G. Serglycin: A structural and functional chameleon with wide impact on immune cells. J Immunobiol. 2011;187:4927–33.

    Article  CAS  Google Scholar 

  10. Esko JD, Selleck SB. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem. 2002;71:435–71.

    Article  CAS  Google Scholar 

  11. Gunay NS, Linhardt RJ. Production and chemical processing of low molecular weight heparins. Semin Thromb Hemost. 1999;25:5–16.

    Google Scholar 

  12. Linhardt RJ. Heparin: structure and activity. J Med Chem. 2003;46:2551–4.

    Google Scholar 

  13. Capila I, Linhardt RJ. Heparin-protein interactions. Angewandte Chemie Int. Ed. 2002;41:390–412; Angewandte Chemie. 2002;114:426–50.

    Google Scholar 

  14. Oduah E, Linhardt RJ, Sharfstein ST. Heparin: past, present, and future. Pharmaceuticals. 2016;9:38.

    Google Scholar 

  15. Onishi A, St. Ange K, Dordick JS, Linhardt RJ. Heparin and anticoagulation. Glycosaminoglycans and related disorders. Front Biosci. 2016;21:1372–92.

    Google Scholar 

  16. Kim YS, Linhardt RJ. Structural features of heparin and their effect on heparin cofactor II mediated inhibition of thrombin. Thromb Res. 1989;53:55–71.

    Google Scholar 

  17. Linhardt RJ, Toida T. Role of glycosaminoglycans in cellular communication. Acc Chem Res. 2004;37:431–8.

    Google Scholar 

  18. Mulloy B, Hogwood J, Gray E, Lever R, Page CP. Pharmacology of heparin and related drugs. Pharmacol Rev. 2016;68(1):76–141.

    Google Scholar 

  19. Kamhi E, Joo EJ, Dordick JS, Linhardt RJ. Glycosaminoglycans in infectious disease. Biol Rev. 2013;88:928–43.

    Google Scholar 

  20. Läubli H, Varki A, Borsig L. Antimetastatic properties of low molecular weight heparin. J Clin Oncol. 2016;34(21):2560–1.

    Google Scholar 

  21. Xu Y, Cai C, Chandarajoti K, Hsieh P-H, Li L, Pham TQ, Sparkenbaugh EM, Sheng J, Key NS, Pawlinski R, Harris EN, Linhardt RJ, Liu J. Design of homogeneous and reversible low molecular weight heparins. Nat Chem Biol. 2014;10:248–50.

    Google Scholar 

  22. Linhardt RJ, Loganathan D, Al-Hakim A, Wang HM, Walenga JM, Hoppensteadt D, Fareed J. Oligosaccharide mapping of low molecular weight heparins: structural differences and their relationship to activity. J Med Chem. 1990;33:1639–45.

    Google Scholar 

  23. Liu H, Zhang Z, Linhardt RJ. Lessons learned from the contamination of heparin. Nat Prod Rep. 2009;26:313–21.

    Google Scholar 

  24. Zhang Z, Weïwer M, Li B, Kemp MM, Daman TH, Linhardt RJ. Oversulfated chondroitin sulfate: impact of a heparin impurity, associated with adverse clinical events, on low molecular weight heparin preparation. J Med Chem. 2008;51:5498–501.

    Google Scholar 

  25. Guerrini M, Beccati D, Shriver Z, Naggi AM, Bisio A, Capila I, Lansing J, Guglieri S, Fraser B, Al-Hakim A, Gunay S, Viswanathan K, Zhang Z, Robinson L, Venkataraman G, Buhse L, Nasr M, Woodcock J, Langer R, Linhardt RJ, Casu B, Torri G, Sasisekharan R. Oversulfated chondroitin sulfateis a major contaminant in heparin associated with adverse clinical events. Nat Biotech. 2008;26:669–775.

    Google Scholar 

  26. Kishimoto TK, Viswanathan K, Ganguly T, Elankumaran S, Smith S, Pelzer K, Lansing JC, Sriranganathan N, Zhao G, Galcheva-Gargova Z, Al-Hakim A, Bailey GS, Fraser B, Roy S, Rogers-Cotrone T, Buhse L, Whary M, Fox J, Nasr M, Dal Pan GJ, Shriver Z, Langer RS, Venkataraman G, Austen KF, Woodcock J, Sasisekharan R. Contaminated heparin associated with adverse clinical events and activation of the contact system. N Engl J Med. 2008;358(23):2457–67.

    Article  CAS  Google Scholar 

  27. Li B, Suwan J, Martin JG, Zhang F, Zhang Z, Hoppensteadt D, Clark M, Fareed J, Linhardt RJ. Oversulfated chondroitin sulfate interaction with heparin-binding proteins: new insights into adverse reactions from contaminated heparins. Biochem Pharmacol. 2009;78:292–300.

    Google Scholar 

  28. Liu Z, Xiao Z, Masuko S, Zhao W, Sterner E, Bansal V, Fareed J, Dordick JS, Zhang F, Linhardt RJ. Mass balance analysis of contaminated heparin product. Anal Biochem. 2011;408:147–56.

    Google Scholar 

  29. Guerrini M, Shriver Z, Naggi A, Casu B, Linhardt RJ, Torri G, Sasisekharan R. Oversulfated chondroitin sulfate is the major contaminant in suspect heparin lots collected in February/March of 2008. Nat Biotechnol. 2010;28:207–11.

    Google Scholar 

  30. Gray E, Hogwood J, Mulloy B. The anticoagulant and antithrombotic mechanisms of heparin. Handb Exp Pharmacol. 2012;(207):43–61.

    Google Scholar 

  31. Szajek AY, Chess E, Johansen K, Gratzl G, Gray E, Keire D, Linhardt RJ, Liu J, Morris T, Mulloy B, Nasr M, Shriver Z, Torralba P, Viskov C, Williams R, Woodcock J, Workman W, Al-Hakim A. The US regulatory and pharmacopeia response to the global heparin contamination crisis. Nat Biotechnol. 2016;34:625–30.

    Google Scholar 

  32. Guerrini M, Zhang Z, Shriver Z, Masuko S, Langer R, Casu B, Linhardt RJ, Torri G, Sasisekharan R. Orthogonal analytical approaches to detect potential contaminants in heparin. Proc Nat Acad Sci USA. 2009;106:16956–61.

    Google Scholar 

  33. Concannon SP, Wimberley PB, Workman WE. A quantitative PCR method to quantify ruminant DNA in porcine crude heparin. Anal Bioanal Chem. 2011;399(2):757–62.

    Google Scholar 

  34. St. Ange K, Onishi A, Fu L, Sun X, Lin L, Mori D, Zhang F, Dordick JS, Fareed J, Hoppensteadt D, Jeske W, Linhardt RJ. Analysis of heparins derived from bovine tissues and comparison to porcine intestinal heparins. Clin Appl Thromb Hemost. 2016;22:520–7.

    Google Scholar 

  35. Guan Y, Xu X, Liu X, Sheng A, Jin L, Linhardt RJ, Chi L. Comparison of low molecular weight heparins prepared using bovine lung heparin and porcine intestine heparin as starting materials. J Pharm Sci. 2016;105:1843–50.

    Google Scholar 

  36. Jasper JP, Zhang F, Poe RB, Linhardt RJ. Stable-isotopic analysis of porcine, bovine, and ovine heparins. J Pharm Sci. 2015;104, 457–63.

    Google Scholar 

  37. Ouyang Y, Zeng Y, Rong Y, Song Y, Shi L, Xu N, Linhardt RJ, Zhang Z. Profiling analysis of low molecular weight heparins by multiple heart-cutting two dimensional chromatography with quadruple time-of-flight mass spectrometry. Anal Chem. 2015;87:8957–63.

    Google Scholar 

  38. Li G, Steppich J, Wang Z, Sun Y, Xue C, Linhardt RJ, Li L. Bottom-up LMWH analysis using LC-FTMS for extensive characterization. Anal Chem. 2014;86:6626–32.

    Google Scholar 

  39. Li L, Zhang F, Zaia J, Linhardt RJ. Top-down approach for the direct characterization of low molecular weight heparins using LC-FT-MS. Anal Chem. 2012;84:8822–9.

    Google Scholar 

  40. Liu X, St. Ange K, Lin L, Zhang F, Chi L, Linhardt RJ. Top-down and bottom-up analysis of commercial low molecular weight heparins. J Chromatogr A. submitted, 2016.

    Google Scholar 

  41. Keire D, Mulloy B, Chase C, Al-Hakim A, Cairatti D, Gray E, Hogwood J, Morris T, Mourão P, Da Luz Carvalho Soares M, Szajek A. Diversifying the global heparin supply chain: reintroduction of bovine heparin in the United States? Pharm Technol. 2015;39(11):2–8.

    Google Scholar 

  42. Mousa SA. Heparin and low-molecular weight heparins in thrombosis and beyond. Methods Mol Biol. 2010;663:109–32.

    Google Scholar 

  43. Olczyk P, Mencner Ł, Komosinska-Vassev K. Diverse roles of heparan sulfate and heparin in wound repair. Biomed Res Int. 2015;2015:549417.

    Google Scholar 

  44. Mousavi S, Moradi M, Khorshidahmad T, Motamedi M. Anti-inflammatory effects of heparin and its derivatives: a systematic review. Adv Pharmacol Sci. 2015;2015:507151.

    Google Scholar 

  45. Lindahl U, Li JP, Kusche-Gullberg M, Salmivirta M, Alaranta S, Veromaa T, Emeis J, Roberts I, Taylor C, Oreste P, Zoppetti G, Naggi A, Torri G, Casu B. Generation of Neoheparin from E. coli K5 capsular polysaccharide. J Med Chem. 2004;48:349–52.

    Article  Google Scholar 

  46. Zhang Z, McCallum SA, Xie J, Nieto L, Corzana F, Jiménez-Barbero J, Chen M, Liu J, Linhardt RJ. Solution structures of chemoenzymatically synthesized heparin and its precursors. J Am Chem Soc. 2008;130:12998–3007.

    Article  CAS  Google Scholar 

  47. He W, Fu L, Li G, Jones JA, Linhardt RJ, Koffas M. Production of chondroitin in metabolically engineered E. coli. Metab Eng. 2015;27:92–100.

    Google Scholar 

  48. Datta P, Linhardt RJ, Sharfstein ST. An ‘omics approach towards CHO cell engineering. Biotechnol Bioeng. 2013;110:1255–71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Linhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, Y., Zhang, F., Linhardt, R.J. (2019). Heparin Contamination and Issues Related to Raw Materials and Controls. In: Sasisekharan, R., Lee, S., Rosenberg, A., Walker, L. (eds) The Science and Regulations of Naturally Derived Complex Drugs. AAPS Advances in the Pharmaceutical Sciences Series, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-11751-1_11

Download citation

Publish with us

Policies and ethics