Skip to main content

Emerging Circulating Biomarkers for The Diagnosis and Assessment of Treatment Responses in Patients with Hepatic Fat Accumulation, Nash and Liver Fibrosis

  • Chapter
  • First Online:
Translational Research Methods in Diabetes, Obesity, and Nonalcoholic Fatty Liver Disease

Abstract

The increasing global prevalence of nonalcoholic fatty liver disease (NAFLD) has prompted efforts to identify affected subjects. In particular, the identification of the presence of nonalcoholic steatohepatitis (NASH) and fibrosis in patients with NAFLD has become a priority. The widely-recognized limitations of liver biopsy as ‘gold standard’ for NASH diagnosis have encouraged the search for non-invasive biomarkers that facilitate risk stratification of patients and the conduction of clinical trials and drug development. In this chapter, we introduce the emerging ‘omics’ approaches in the biomarker research in NAFLD. We have summarized the latest innovations in lipidomics, proteomics and microRNA biomarkers, and described the most common panels of blood-based biomarkers for the diagnosis of different stages of NAFLD, from simple steatosis to NASH with varying degrees of fibrosis. We also review some examples of the application of circulating biomarkers in clinical trial for drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aby E, Saab S. Nonobese nonalcoholic fatty liver disease. Clin Liver Dis. 2017;10(5):130–3.

    Article  Google Scholar 

  2. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313–21.

    Article  PubMed  Google Scholar 

  3. Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: old questions and new insights. Science. 2011;332(6037):1519–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67(1):328–57.

    Article  PubMed  Google Scholar 

  5. European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD), European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 2016;64(6):1388–402.

    Article  Google Scholar 

  6. Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24(7):908–22.

    Google Scholar 

  7. Filozof C, Goldstein BJ, Williams RN, Sanyal A. Non-alcoholic steatohepatitis: limited available treatment options but promising drugs in development and recent progress towards a regulatory approval pathway. Drugs. 2015;75(12):1373–92.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fuchs M. New medical treatment strategies for nonalcoholic steatohepatitis. Curr Treat Options Gastroenterol. 2015;13(2):259–73.

    Article  PubMed  Google Scholar 

  9. Wegermann K, Diehl AM, Moylan CA. Disease pathways and molecular mechanisms of nonalcoholic steatohepatitis. Clin Liver Dis. 2018;11(4):87–91.

    Article  Google Scholar 

  10. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  11. Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 2012;13(4):271–82.

    Article  CAS  PubMed  Google Scholar 

  12. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–74.

    Article  CAS  PubMed  Google Scholar 

  13. Li Y, Kowdley KV. MicroRNAs in common human diseases. Genomics Proteomics Bioinformatics. 2012;10(5):246–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gori M, Arciello M, Balsano C. MicroRNAs in nonalcoholic fatty liver disease: novel biomarkers and prognostic tools during the transition from steatosis to hepatocarcinoma. Bio Med Res Int. 2014;2014:741465.

    Google Scholar 

  15. Paul P, Chakraborty A, Sarkar D, Langthasa M, Rahman M, Bari M, et al. Interplay between miRNAs and human diseases. J Cell Physiol. 2018;233(3):2007–18.

    Article  CAS  PubMed  Google Scholar 

  16. Catalanotto C, Cogoni C, Zardo G. MicroRNA in control of gene expression: an overview of nuclear functions. Int J Mol Sci. 2016;17(10)

    Google Scholar 

  17. Roberts TC. The MicroRNA biology of the mammalian nucleus. Mol Ther Nucleic Acids. 2014;3:e188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 2009;11(3):228–34.

    Article  CAS  PubMed  Google Scholar 

  19. Du T, Zamore PD. microPrimer: the biogenesis and function of microRNA. Dev Camb Engl. 2005;132(21):4645–52.

    CAS  Google Scholar 

  20. Rayner KJ, Hennessy EJ. Extracellular communication via microRNA: lipid particles have a new message. J Lipid Res. 2013;54(5):1174–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Baffy G. MicroRNAs in nonalcoholic fatty liver disease. J Clin Med. 2015;4(12):1977–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tan Y, Ge G, Pan T, Wen D, Gan J. A pilot study of serum microRNAs panel as potential biomarkers for diagnosis of nonalcoholic fatty liver disease. PLoS One. 2014;9(8):e105192.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Ceccarelli S, Panera N, Gnani D, Nobili V. Dual role of microRNAs in NAFLD. Int J Mol Sci. 2013;14(4):8437–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Zen K, Zhang C-Y. Circulating microRNAs: a novel class of biomarkers to diagnose and monitor human cancers. Med Res Rev. 2012;32(2):326–48.

    Article  PubMed  CAS  Google Scholar 

  25. Bala S, Marcos M, Szabo G. Emerging role of microRNAs in liver diseases. World J Gastroenterol. 2009;15(45):5633–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cermelli S, Ruggieri A, Marrero JA, Ioannou GN, Beretta L. Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease. PLoS One. 2011;6(8):e23937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yamada H, Suzuki K, Ichino N, Ando Y, Sawada A, Osakabe K, et al. Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver. Clin Chim Acta. 2013;424:99–103.

    Article  CAS  PubMed  Google Scholar 

  28. Pirola CJ, Fernández Gianotti T, Castaño GO, Mallardi P, San Martino J, Mora Gonzalez Lopez Ledesma M, et al. Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis. Gut. 2015;64(5):800–12.

    Article  CAS  PubMed  Google Scholar 

  29. Csak T, Bala S, Lippai D, Satishchandran A, Catalano D, Kodys K, et al. microRNA-122 regulates hypoxia-inducible factor-1 and vimentin in hepatocytes and correlates with fibrosis in diet-induced steatohepatitis. Liver Int. 2015;35(2):532–41.

    Article  CAS  PubMed  Google Scholar 

  30. Szabo G, Csak T. Role of MicroRNAs in NAFLD/NASH. Dig Dis Sci. 2016;61(5):1314–24.

    Article  CAS  PubMed  Google Scholar 

  31. Becker PP, Rau M, Schmitt J, Malsch C, Hammer C, Bantel H, et al. Performance of serum microRNAs −122, −192 and −21 as biomarkers in patients with non-alcoholic steatohepatitis. PLoS One. 2015;10(11):e0142661.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Ge W, Yu D-C, Li Q-G, Chen X, Zhang C-Y, Ding Y-T. Expression of serum miR-16, let-7f, and miR-21 in patients with hepatocellular carcinoma and their clinical significances. Clin Lab. 2014;60(3):427–34.

    CAS  PubMed  Google Scholar 

  33. Francque SM, Ratziu V, Harrison S, Anstee Q, Bedossa P, Cordonnier G, et al. Validation of mir-34a, mir-122 and mir-200a as biomarkers for identification of NASH patients eligible for treatment. Hepatology. 2016;64(6):1119A.

    Google Scholar 

  34. Su Q, Kumar V, Sud N, Mahato RI. MicroRNAs in the pathogenesis and treatment of progressive liver injury in NAFLD and liver fibrosis. Adv Drug Deliv Rev. 2018;129:54–63.

    Article  CAS  PubMed  Google Scholar 

  35. Castro RE, Ferreira DMS, Afonso MB, Borralho PM, Machado MV, Cortez-Pinto H, et al. miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease. J Hepatol. 2013;58(1):119–25.

    Article  CAS  PubMed  Google Scholar 

  36. Ding J, Li M, Wan X, Jin X, Chen S, Yu C, et al. Effect of miR-34a in regulating steatosis by targeting PPARα expression in nonalcoholic fatty liver disease. Sci Rep. 2015;5:13729.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ren F-H, Yang H, He R-Q, Lu J-N, Lin X-G, Liang H-W, et al. Analysis of microarrays of miR-34a and its identification of prospective target gene signature in hepatocellular carcinoma. BMC Cancer. 2018;18(1):12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Cordonnier G, Texier F, Noel B, Degallaix N, Sudrick FB, Brozek J, et al. Expression profiling of 728 miRNAs in a NASH model identifies excellent correlations of hepatic and circulation miR-34a levels with histological lesions in rats and men. J Hepatol. 2018;68:S347–8.

    Article  Google Scholar 

  39. Jiang L, Cheng Q, Zhang B-H, Zhang M-Z. Circulating microRNAs as biomarkers in hepatocellular carcinoma screening: a validation set from China. Medicine (Baltimore). 2015;94(10):e603.

    Article  CAS  Google Scholar 

  40. Sun C, Huang F, Liu X, Xiao X, Yang M, Hu G, et al. miR-21 regulates triglyceride and cholesterol metabolism in non-alcoholic fatty liver disease by targeting HMGCR. Int J Mol Med. 2015;35(3):847–53.

    Article  CAS  PubMed  Google Scholar 

  41. Wu H, Ng R, Chen X, Steer CJ, Song G. MicroRNA-21 is a potential link between non-alcoholic fatty liver disease and hepatocellular carcinoma via modulation of the HBP1-p53-Srebp1c pathway. Gut. 2016;65(11):1850–60.

    Article  CAS  PubMed  Google Scholar 

  42. Wen Y, Han J, Chen J, Dong J, Xia Y, Liu J, et al. Plasma miRNAs as early biomarkers for detecting hepatocellular carcinoma. Int J Cancer. 2015;137(7):1679–90.

    Article  CAS  PubMed  Google Scholar 

  43. Povero D, de Araujo Horcel L, Eguchi A, Johnson C, Kneiber D, Feldstein AE. MiR-128-3p is enriched in the liver of murine models of NASH and is a key contributor to liver fibrosis via modulation of hepatic stellate cell phenotype. Proceedings of The 66th Annual Meeting of the American Association for the Study of Liver Diseases: The Liver Meeting. San Francisco, CA; 2015. p. 13–7.

    Google Scholar 

  44. Lambrecht J, Jan Poortmans P, Verhulst S, Reynaert H, Mannaerts I, van Grunsven LA. Circulating ECV-associated miRNAs as potential clinical biomarkers in early stage HBV and HCV induced liver fibrosis. Front Pharmacol. 2017;8:56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Matsuura K, De Giorgi V, Schechterly C, Wang RY, Farci P, Tanaka Y, et al. Circulating let-7 levels in plasma and extracellular vesicles correlate with hepatic fibrosis progression in chronic hepatitis C. Hepatol Baltim Md. 2016;64(3):732–45.

    Article  CAS  Google Scholar 

  46. Amacher DE. Progress in the search for circulating biomarkers of nonalcoholic fatty liver disease. Biomarkers. 2014;19(7):541–52.

    Article  CAS  PubMed  Google Scholar 

  47. Yilmaz Y. Serum proteomics for biomarker discovery in nonalcoholic fatty liver disease. Clin Chim Acta. 2012;413(15–16):1190–3.

    Article  CAS  PubMed  Google Scholar 

  48. Nuño-Lámbarri N, Barbero-Becerra VJ, Uribe M, Chávez-Tapia NC. Mitochondrial molecular pathophysiology of nonalcoholic fatty liver disease: a proteomics approach. Int J Mol Sci. 2016;17(3):281.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Pratt DS, Kaplan MM. Evaluation of abnormal liver-enzyme results in asymptomatic patients. N Engl J Med. 2000;342(17):1266–71.

    Article  CAS  PubMed  Google Scholar 

  50. Angulo P, Hui JM, Marchesini G, Bugianesi E, George J, Farrell GC, et al. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology. 2007;45(4):846–54.

    Article  CAS  PubMed  Google Scholar 

  51. Fracanzani AL, Valenti L, Bugianesi E, Andreoletti M, Colli A, Vanni E, et al. Risk of severe liver disease in nonalcoholic fatty liver disease with normal aminotransferase levels: a role for insulin resistance and diabetes. Hepatology. 2008;48(3):792–8.

    Article  CAS  PubMed  Google Scholar 

  52. Mofrad P, Contos MJ, Haque M, Sargeant C, Fisher RA, Luketic VA, et al. Clinical and histologic spectrum of nonalcoholic fatty liver disease associated with normal ALT values. Hepatology. 2003;37(6):1286–92.

    Article  PubMed  Google Scholar 

  53. Papagianni M, Sofogianni A, Tziomalos K. Non-invasive methods for the diagnosis of nonalcoholic fatty liver disease. World J Hepatol. 2015;7(4):638–48.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Neuman MG, Cohen LB, Nanau RM. Biomarkers in nonalcoholic fatty liver disease. Can J Gastroenterol Hepatol. 2014;28(11):607–18.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sookoian S, Castaño GO, Scian R, Fernández Gianotti T, Dopazo H, Rohr C, et al. Serum aminotransferases in nonalcoholic fatty liver disease are a signature of liver metabolic perturbations at the amino acid and Krebs cycle level. Am J Clin Nutr. 2016;103(2):422–34.

    Article  CAS  PubMed  Google Scholar 

  56. Feldstein AE, Wieckowska A, Lopez AR, Liu Y-C, Zein NN, McCullough AJ. Cytokeratin-18 fragment levels as noninvasive biomarkers for nonalcoholic steatohepatitis: a multicenter validation study. Hepatology. 2009;50(4):1072–8.

    Article  CAS  PubMed  Google Scholar 

  57. Bantel H, Lügering A, Heidemann J, Volkmann X, Poremba C, Strassburg CP, et al. Detection of apoptotic caspase activation in sera from patients with chronic HCV infection is associated with fibrotic liver injury. Hepatology. 2004;40(5):1078–87.

    Article  CAS  PubMed  Google Scholar 

  58. Kramer G, Erdal H, Mertens HJMM, Nap M, Mauermann J, Steiner G, et al. Differentiation between cell death modes using measurements of different soluble forms of extracellular cytokeratin 18. Cancer Res. 2004;64(5):1751–6.

    Article  CAS  PubMed  Google Scholar 

  59. Wieckowska A, Zein NN, Yerian LM, Lopez AR, McCullough AJ, Feldstein AE. In vivo assessment of liver cell apoptosis as a novel biomarker of disease severity in nonalcoholic fatty liver disease. Hepatology. 2006;44(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  60. Kawanaka M, Nishino K, Nakamura J, Urata N, Oka T, Goto D, et al. Correlation between serum cytokeratin-18 and the progression or regression of non-alcoholic fatty liver disease. Ann Hepatol. 2015;14(6):837–44.

    Article  PubMed  Google Scholar 

  61. Mandelia C, Collyer E, Mansoor S, Lopez R, Lappe S, Nobili V, et al. Plasma cytokeratin-18 level as a novel biomarker for liver fibrosis in children with nonalcoholic fatty liver disease. J Pediatr Gastroenterol Nutr. 2016;63(2):181–7.

    Article  CAS  PubMed  Google Scholar 

  62. Cusi K, Chang Z, Harrison S, Lomonaco R, Bril F, Orsak B, et al. Limited value of plasma cytokeratin-18 as a biomarker for NASH and fibrosis in patients with non-alcoholic fatty liver disease. J Hepatol. 2014;60(1):167–74.

    Article  CAS  PubMed  Google Scholar 

  63. Chen J, Zhu Y, Zheng Q, Jiang J. Serum cytokeratin-18 in the diagnosis of non-alcoholic steatohepatitis: a meta-analysis. Hepatol Res. 2014;44(8):854–62.

    Article  CAS  PubMed  Google Scholar 

  64. Pimentel CFMG, Jiang ZG, Otsubo T, Feldbrügge L, Challies TL, Nasser I, et al. Poor inter-test reliability between CK18 kits as a biomarker of NASH. Dig Dis Sci. 2016;61(3):905–12.

    Article  CAS  PubMed  Google Scholar 

  65. Li H, Fang Q, Gao F, Fan J, Zhou J, Wang X, et al. Fibroblast growth factor 21 levels are increased in nonalcoholic fatty liver disease patients and are correlated with hepatic triglyceride. J Hepatol. 2010;53(5):934–40.

    Article  CAS  PubMed  Google Scholar 

  66. Yan H, Xia M, Chang X, Xu Q, Bian H, Zeng M, et al. Circulating fibroblast growth factor 21 levels are closely associated with hepatic fat content: a cross-sectional study. PLoS One. 2011;6(9):e24895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yilmaz Y, Eren F, Yonal O, Kurt R, Aktas B, Celikel CA, et al. Increased serum FGF21 levels in patients with nonalcoholic fatty liver disease. Eur J Clin Investig. 2010;40(10):887–92.

    Article  CAS  Google Scholar 

  68. Dushay J, Chui PC, Gopalakrishnan GS, Varela-Rey M, Crawley M, Fisher FM, et al. Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology. 2010;139(2):456–63.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang X, Yeung DCY, Karpisek M, Stejskal D, Zhou Z-G, Liu F, et al. Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes. 2008;57(5):1246–53.

    Article  CAS  PubMed  Google Scholar 

  70. Shen J, Chan HL-Y, Wong GL-H, Choi PC-L, Chan AW-H, Chan H-Y, et al. Non-invasive diagnosis of non-alcoholic steatohepatitis by combined serum biomarkers. J Hepatol. 2012;56(6):1363–70.

    Article  CAS  PubMed  Google Scholar 

  71. Wu G, Li H, Fang Q, Zhang J, Zhang M, Zhang L, et al. Complementary role of fibroblast growth factor 21 and cytokeratin 18 in monitoring the different stages of nonalcoholic fatty liver disease. Sci Rep. 2017;7(1):5095.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Yang M, Xu D, Liu Y, Guo X, Li W, Guo C, et al. Combined serum biomarkers in non-invasive diagnosis of non-alcoholic Steatohepatitis. PLoS One. 2015;10(6):e0131664.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Newcomer ME, Ong DE. Plasma retinol binding protein: structure and function of the prototypic lipocalin. Biochim Biophys Acta. 2000;1482(1–2):57–64.

    Article  CAS  PubMed  Google Scholar 

  74. Graham TE, Yang Q, Blüher M, Hammarstedt A, Ciaraldi TP, Henry RR, et al. Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N Engl J Med. 2006;354(24):2552–63.

    Article  CAS  PubMed  Google Scholar 

  75. Terra X, Auguet T, Broch M, Sabench F, Hernández M, Pastor RM, et al. Retinol binding protein-4 circulating levels were higher in nonalcoholic fatty liver disease vs. histologically normal liver from morbidly obese women. Obesity (Silver Spring). 2013;21(1):170–7.

    Article  CAS  Google Scholar 

  76. Stefan N, Hennige AM, Staiger H, Machann J, Schick F, Schleicher E, et al. High circulating retinol-binding protein 4 is associated with elevated liver fat but not with total, subcutaneous, visceral, or intramyocellular fat in humans. Diabetes Care. 2007;30(5):1173–8.

    Article  CAS  PubMed  Google Scholar 

  77. Seo JA, Kim NH, Park SY, Kim HY, Ryu OH, Lee KW, et al. Serum retinol-binding protein 4 levels are elevated in non-alcoholic fatty liver disease. Clin Endocrinol. 2008;68(4):555–60.

    Article  CAS  Google Scholar 

  78. Chen X, Shen T, Li Q, Chen X, Li Y, Li D, et al. Retinol binding protein-4 levels and non-alcoholic fatty liver disease: a community-based cross-sectional study. Sci Rep. 2017;7:45100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bell LN, Theodorakis JL, Vuppalanchi R, Saxena R, Bemis KG, Wang M, et al. Serum proteomics and biomarker discovery across the spectrum of nonalcoholic fatty liver disease. Hepatology. 2010;51(1):111–20.

    Article  CAS  PubMed  Google Scholar 

  80. Polyzos SA, Toulis KA, Goulis DG, Zavos C, Kountouras J. Serum total adiponectin in nonalcoholic fatty liver disease: a systematic review and meta-analysis. Metabolism. 2011;60(3):313–26.

    Article  CAS  PubMed  Google Scholar 

  81. Polyzos SA, Kountouras J, Mantzoros CS. Leptin in nonalcoholic fatty liver disease: a narrative review. Metabolism. 2015;64(1):60–78.

    Article  CAS  PubMed  Google Scholar 

  82. Adolph TE, Grander C, Grabherr F, Tilg H. Adipokines and non-alcoholic fatty liver disease: multiple interactions. Int J Mol Sci. 2017;18(8):1649.

    Article  PubMed Central  CAS  Google Scholar 

  83. Senn JJ, Klover PJ, Nowak IA, Zimmers TA, Koniaris LG, Furlanetto RW, et al. Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. J Biol Chem. 2003;278(16):13740–6.

    Article  CAS  PubMed  Google Scholar 

  84. Kim J-H, Bachmann RA, Chen J. Interleukin-6 and insulin resistance. Vitam Horm. 2009;80:613–33.

    Article  CAS  PubMed  Google Scholar 

  85. Jarrar MH, Baranova A, Collantes R, Ranard B, Stepanova M, Bennett C, et al. Adipokines and cytokines in non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2008;27(5):412–21.

    Article  CAS  PubMed  Google Scholar 

  86. Wieckowska A, Papouchado BG, Li Z, Lopez R, Zein NN, Feldstein AE. Increased hepatic and circulating interleukin-6 levels in human nonalcoholic steatohepatitis. Am J Gastroenterol. 2008;103(6):1372–9.

    Article  CAS  PubMed  Google Scholar 

  87. García-Galiano D, Sánchez-Garrido MA, Espejo I, Montero JL, Costán G, Marchal T, et al. IL-6 and IGF-1 are independent prognostic factors of liver steatosis and non-alcoholic steatohepatitis in morbidly obese patients. Obes Surg. 2007;17(4):493–503.

    Article  PubMed  Google Scholar 

  88. Jamali R, Arj A, Razavizade M, Aarabi MH. Prediction of nonalcoholic fatty liver disease via a novel panel of serum adipokines. Medicine (Baltimore). 2016;95(5):e2630.

    Article  CAS  Google Scholar 

  89. Vonghia L, Francque S. Cross talk of the immune system in the adipose tissue and the liver in non-alcoholic steatohepatitis: pathology and beyond. World J Hepatol. 2015;7(15):1905–12.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Tamimi TIA-R, Elgouhari HM, Alkhouri N, Yerian LM, Berk MP, Lopez R, et al. An apoptosis panel for nonalcoholic steatohepatitis diagnosis. J Hepatol. 2011;54(6):1224–9.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Feldstein AE, Canbay A, Guicciardi ME, Higuchi H, Bronk SF, Gores GJ. Diet associated hepatic steatosis sensitizes to Fas mediated liver injury in mice. J Hepatol. 2003;39(6):978–83.

    Article  CAS  PubMed  Google Scholar 

  92. Alkhouri N, Alisi A, Okwu V, Matloob A, Ferrari F, Crudele A, et al. Circulating soluble fas and fas ligand levels are elevated in children with nonalcoholic steatohepatitis. Dig Dis Sci. 2015;60(8):2353–9.

    Article  CAS  PubMed  Google Scholar 

  93. Manousou P, Kalambokis G, Grillo F, Watkins J, Xirouchakis E, Pleguezuelo M, et al. Serum ferritin is a discriminant marker for both fibrosis and inflammation in histologically proven non-alcoholic fatty liver disease patients. Liver Int. 2011;31(5):730–9.

    Article  CAS  PubMed  Google Scholar 

  94. Kowdley KV, Belt P, Wilson LA, Yeh MM, Neuschwander-Tetri BA, Chalasani N, et al. Serum ferritin is an independent predictor of histologic severity and advanced fibrosis in patients with nonalcoholic fatty liver disease. Hepatology. 2012;55(1):77–85.

    Article  CAS  PubMed  Google Scholar 

  95. Yoneda M, Nozaki Y, Endo H, Mawatari H, Iida H, Fujita K, et al. Serum ferritin is a clinical biomarker in Japanese patients with nonalcoholic steatohepatitis (NASH) independent of HFE gene mutation. Dig Dis Sci. 2010;55(3):808–14.

    Article  CAS  PubMed  Google Scholar 

  96. Yu C, Xu C, Xu L, Yu J, Miao M, Li Y. Serum proteomic analysis revealed diagnostic value of hemoglobin for nonalcoholic fatty liver disease. J Hepatol. 2012;56(1):241–7.

    Article  CAS  PubMed  Google Scholar 

  97. Nielsen MJ, Nedergaard AF, Sun S, Veidal SS, Larsen L, Zheng Q, et al. The neo-epitope specific PRO-C3 ELISA measures true formation of type III collagen associated with liver and muscle parameters. Am J Transl Res. 2013;5(3):303–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Tanwar S, Trembling PM, Guha IN, Parkes J, Kaye P, Burt AD, et al. Validation of terminal peptide of procollagen III for the detection and assessment of nonalcoholic steatohepatitis in patients with nonalcoholic fatty liver disease. Hepatology. 2013;57(1):103–11.

    Article  CAS  PubMed  Google Scholar 

  99. Karsdal MA, Henriksen K, Nielsen MJ, Byrjalsen I, Leeming DJ, Gardner S, et al. Fibrogenesis assessed by serological type III collagen formation identifies patients with progressive liver fibrosis and responders to a potential antifibrotic therapy. Am J Physiol Gastrointest Liver Physiol. 2016;311(6):G1009–17.

    Article  PubMed  Google Scholar 

  100. Younossi ZM, Loomba R, Anstee QM, Rinella ME, Bugianesi E, Marchesini G, et al. Diagnostic Modalities for Non-alcoholic Fatty Liver Disease (NAFLD), Non-alcoholic Steatohepatitis (NASH) and Associated Fibrosis. Hepatology. 2018;68(1):349–60.

    Article  PubMed  Google Scholar 

  101. Kamada Y, Ono M, Hyogo H, Fujii H, Sumida Y, Mori K, et al. A novel noninvasive diagnostic method for nonalcoholic steatohepatitis using two glycobiomarkers. Hepatology. 2015;62(5):1433–43.

    Article  CAS  PubMed  Google Scholar 

  102. Boga S, Koksal AR, Alkim H, Yilmaz Ozguven MB, Bayram M, Ergun M, et al. Plasma Pentraxin 3 Differentiates Nonalcoholic Steatohepatitis (NASH) from Non-NASH. Metab Syndr Relat Disord. 2015;13(9):393–9.

    Article  CAS  PubMed  Google Scholar 

  103. Yeniova AO, Küçükazman M, Ata N, Dal K, Kefeli A, Başyiğit S, et al. High-sensitivity C-reactive protein is a strong predictor of non-alcoholic fatty liver disease. Hepato-Gastroenterology. 2014;61(130):422–5.

    CAS  PubMed  Google Scholar 

  104. Akbal E, Koçak E, Akyürek Ö, Köklü S, Batgi H, Şenes M. Liver fatty acid-binding protein as a diagnostic marker for non-alcoholic fatty liver disease. Wien Klin Wochenschr. 2016;128(1–2):48–52.

    Article  CAS  PubMed  Google Scholar 

  105. Colak Y, Senates E, Ozturk O, Yilmaz Y, Coskunpinar E, Kahraman OT, et al. Plasma fibrinogen-like protein 2 levels in patients with non-alcoholic fatty liver disease. Hepato-Gastroenterology. 2011;58(112):2087–90.

    CAS  PubMed  Google Scholar 

  106. Nicholson JK, Lindon JC. Systems biology: metabonomics. Nature. 2008;455(7216):1054–6.

    Article  CAS  PubMed  Google Scholar 

  107. Mato JM, Martínez-Chantar ML, Lu SC. Systems biology for hepatologists. Hepatology. 2014;60(2):736–43.

    Article  CAS  PubMed  Google Scholar 

  108. Holmes E, Wijeyesekera A, Taylor-Robinson SD, Nicholson JK. The promise of metabolic phenotyping in gastroenterology and hepatology. Nat Rev Gastroenterol Hepatol. 2015;12(8):458–71.

    Article  PubMed  Google Scholar 

  109. Patti GJ, Yanes O, Siuzdak G. Innovation: metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol. 2012;13(4):263–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cano A, Alonso C. Deciphering non-alcoholic fatty liver disease through metabolomics. Biochem Soc Trans. 2014;42(5):1447–52.

    Article  CAS  PubMed  Google Scholar 

  111. Alonso C, Fernández-Ramos D, Varela-Rey M, Martínez-Arranz I, Navasa N, Van Liempd SM, et al. Metabolomic identification of subtypes of nonalcoholic steatohepatitis. Gastroenterology. 2017;152(6):1449–1461.e7.

    Article  PubMed  Google Scholar 

  112. Iruarrizaga-Lejarreta M, Varela-Rey M, Fernández-Ramos D, Martínez-Arranz I, Delgado TC, Simon J, et al. Role of aramchol in steatohepatitis and fibrosis in mice. Hepatol Commun. 2017;1(9):911–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Psychogios N, Hau DD, Peng J, Guo AC, Mandal R, Bouatra S, et al. The human serum metabolome. PLoS One. 2011;6(2):e16957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Quehenberger O, Armando AM, Brown AH, Milne SB, Myers DS, Merrill AH, et al. Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res. 2010;51(11):3299–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Puri P, Wiest MM, Cheung O, Mirshahi F, Sargeant C, Min H-K, et al. The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology. 2009;50(6):1827–38.

    Article  CAS  PubMed  Google Scholar 

  116. Barr J, Vázquez-Chantada M, Alonso C, Pérez-Cormenzana M, Mayo R, Galán A, et al. Liquid chromatography-mass spectrometry-based parallel metabolic profiling of human and mouse model serum reveals putative biomarkers associated with the progression of nonalcoholic fatty liver disease. J Proteome Res. 2010;9(9):4501–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Feldstein AE, Lopez R, Tamimi TA-R, Yerian L, Chung Y-M, Berk M, et al. Mass spectrometric profiling of oxidized lipid products in human nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. J Lipid Res. 2010;51(10):3046–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kalhan SC, Guo L, Edmison J, Dasarathy S, McCullough AJ, Hanson RW, et al. Plasma metabolomic profile in nonalcoholic fatty liver disease. Metabolism. 2011;60(3):404–13.

    Article  CAS  PubMed  Google Scholar 

  119. Gorden DL, Ivanova PT, Myers DS, McIntyre JO, VanSaun MN, Wright JK, et al. Increased diacylglycerols characterize hepatic lipid changes in progression of human nonalcoholic fatty liver disease; comparison to a murine model. PLoS One. 2011;6(8):e22775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Barr J, Caballería J, Martínez-Arranz I, Domínguez-Díez A, Alonso C, Muntané J, et al. Obesity-dependent metabolic signatures associated with nonalcoholic fatty liver disease progression. J Proteome Res. 2012;11(4):2521–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Orešič M, Hyötyläinen T, Kotronen A, Gopalacharyulu P, Nygren H, Arola J, et al. Prediction of non-alcoholic fatty-liver disease and liver fat content by serum molecular lipids. Diabetologia. 2013;56(10):2266–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Gorden DL, Myers DS, Ivanova PT, Fahy E, Maurya MR, Gupta S, et al. Biomarkers of NAFLD progression: a lipidomics approach to an epidemic. J Lipid Res. 2015;56(3):722–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Loomba R, Quehenberger O, Armando A, Dennis EA. Polyunsaturated fatty acid metabolites as novel lipidomic biomarkers for noninvasive diagnosis of nonalcoholic steatohepatitis. J Lipid Res. 2015;56(1):185–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pietiläinen KH, Sysi-Aho M, Rissanen A, Seppänen-Laakso T, Yki-Järvinen H, Kaprio J, et al. Acquired obesity is associated with changes in the serum lipidomic profile independent of genetic effects--a monozygotic twin study. PLoS One. 2007;2(2):e218.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Kim JY, Park JY, Kim OY, Ham BM, Kim H-J, Kwon DY, et al. Metabolic profiling of plasma in overweight/obese and lean men using ultra performance liquid chromatography and Q-TOF mass spectrometry (UPLC-Q-TOF MS). J Proteome Res. 2010;9(9):4368–75.

    Article  CAS  PubMed  Google Scholar 

  126. Zhang A, Sun H, Wang X. Power of metabolomics in biomarker discovery and mining mechanisms of obesity. Obes Rev. 2013;14(4):344–9.

    Article  CAS  PubMed  Google Scholar 

  127. Xie B, Waters MJ, Schirra HJ. Investigating potential mechanisms of obesity by metabolomics. J Biomed Biotechnol. 2012;2012:805683.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Kimberly WT, O’Sullivan JF, Nath AK, Keyes M, Shi X, Larson MG, et al. Metabolite profiling identifies anandamide as a biomarker of nonalcoholic steatohepatitis. JCI Insight. 2017;2(9)

    Google Scholar 

  129. Tokushige K, Hashimoto E, Kodama K, Tobari M, Matsushita N, Kogiso T, et al. Serum metabolomic profile and potential biomarkers for severity of fibrosis in nonalcoholic fatty liver disease. J Gastroenterol. 2013;48(12):1392–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Charlton M, Angulo P, Chalasani N, Merriman R, Viker K, Charatcharoenwitthaya P, et al. Low circulating levels of dehydroepiandrosterone in histologically advanced nonalcoholic fatty liver disease. Hepatology. 2008;47(2):484–92.

    Article  CAS  PubMed  Google Scholar 

  131. Puri P, Baillie RA, Wiest MM, Mirshahi F, Choudhury J, Cheung O, et al. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology. 2007;46(4):1081–90.

    Article  CAS  PubMed  Google Scholar 

  132. Dennis EA, Norris PC. Eicosanoid storm in infection and inflammation. Nat Rev Immunol. 2015;15(8):511–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhou Y, Orešič M, Leivonen M, Gopalacharyulu P, Hyysalo J, Arola J, et al. Noninvasive detection of nonalcoholic steatohepatitis using clinical markers and circulating levels of lipids and metabolites. Clin Gastroenterol Hepatol. 2016;14(10):1463–1472.e6.

    Article  CAS  PubMed  Google Scholar 

  134. Chalasani N, Guo X, Loomba R, Goodarzi MO, Haritunians T, Kwon S, et al. Genome-wide association study identifies variants associated with histologic features of nonalcoholic Fatty liver disease. Gastroenterology. 2010;139(5):1567–76, 1576.e1–6

    Article  PubMed  Google Scholar 

  135. Luukkonen PK, Zhou Y, Hyötyläinen T, Leivonen M, Arola J, Orho-Melander M, et al. The MBOAT7 variant rs641738 alters hepatic phosphatidylinositols and increases severity of non-alcoholic fatty liver disease in humans. J Hepatol. 2016;65(6):1263–5.

    Article  CAS  PubMed  Google Scholar 

  136. Alonso C, Mato JM. Nonalcoholic fatty liver disease. In: Nicholls A, Theodoridis G, Wilson ID, editors. Global metabolic profiling: clinical applications: Future Science Ltd; 2014. p. 110–22.

    Google Scholar 

  137. Mayo R, Crespo J, Martínez-Arranz I, Banales JM, Arias M, Mincholé I, et al. Metabolomic-based noninvasive serum test to diagnose nonalcoholic steatohepatitis: results from discovery and validation cohorts. Hepatol Commun. 2018;2(7):807–20.

    Google Scholar 

  138. Bril F, Millán L, Kalavalapalli S, McPhaul MJ, Caulfield MP, Martinez-Arranz I, et al. Use of a metabolomic approach to non-invasively diagnose non-alcoholic fatty liver disease in patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2018;20(7):1702–9.

    Article  CAS  PubMed  Google Scholar 

  139. Rinella ME, Sanyal AJ. NAFLD in 2014: genetics, diagnostics and therapeutic advances in NAFLD. Nat Rev Gastroenterol Hepatol. 2015;12(2):65–6.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism. 2016;65(8):1038–48.

    Article  CAS  PubMed  Google Scholar 

  141. Machado MV, Cortez-Pinto H. Non-invasive diagnosis of non-alcoholic fatty liver disease. A critical appraisal. J Hepatol. 2013;58(5):1007–19.

    Article  PubMed  Google Scholar 

  142. Poynard T, Imbert-Bismut F, Munteanu M, Ratziu V. FibroTest-FibroSURE: towards a universal biomarker of liver fibrosis? Expert Rev Mol Diagn. 2005;5(1):15–21.

    Article  CAS  PubMed  Google Scholar 

  143. Munteanu M, Tiniakos D, Anstee Q, Charlotte F, Marchesini G, Bugianesi E, et al. Diagnostic performance of FibroTest, SteatoTest and ActiTest in patients with NAFLD using the SAF score as histological reference. Aliment Pharmacol Ther. 2016;44(8):877–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bedogni G, Bellentani S, Miglioli L, Masutti F, Passalacqua M, Castiglione A, et al. The Fatty Liver Index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006;6:33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Bedogni G, Kahn HS, Bellentani S, Tiribelli C. A simple index of lipid overaccumulation is a good marker of liver steatosis. BMC Gastroenterol. 2010;10:98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Kotronen A, Seppänen-Laakso T, Westerbacka J, Kiviluoto T, Arola J, Ruskeepää A-L, et al. Hepatic stearoyl-CoA desaturase (SCD)-1 activity and diacylglycerol but not ceramide concentrations are increased in the nonalcoholic human fatty liver. Diabetes. 2009;58(1):203–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lee J-H, Kim D, Kim HJ, Lee C-H, Yang JI, Kim W, et al. Hepatic steatosis index: a simple screening tool reflecting nonalcoholic fatty liver disease. Dig Liver Dis. 2010;42(7):503–8.

    Article  CAS  PubMed  Google Scholar 

  148. Poynard T, Ratziu V, Charlotte F, Messous D, Munteanu M, Imbert-Bismut F, et al. Diagnostic value of biochemical markers (NashTest) for the prediction of non alcoholo steato hepatitis in patients with non-alcoholic fatty liver disease. BMC Gastroenterol. 2006;6:34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Younossi ZM, Page S, Rafiq N, Birerdinc A, Stepanova M, Hossain N, et al. A biomarker panel for non-alcoholic steatohepatitis (NASH) and NASH-related fibrosis. Obes Surg. 2011;21(4):431–9.

    Article  PubMed  Google Scholar 

  150. Kaswala DH, Lai M, Afdhal NH. Fibrosis Assessment in Nonalcoholic Fatty Liver Disease (NAFLD) in 2016. Dig Dis Sci. 2016;61(5):1356–64.

    Article  CAS  PubMed  Google Scholar 

  151. Cheah MC, McCullough AJ, Goh GB-B. Current modalities of fibrosis assessment in non-alcoholic fatty liver disease. J Clin Transl Hepatol. 2017;5(3):261–71.

    PubMed  PubMed Central  Google Scholar 

  152. Enomoto H, Bando Y, Nakamura H, Nishiguchi S, Koga M. Liver fibrosis markers of nonalcoholic steatohepatitis. World J Gastroenterol. 2015;21(24):7427–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Buzzetti E, Lombardi R, De Luca L, Tsochatzis EA. Noninvasive assessment of fibrosis in patients with nonalcoholic fatty liver disease. Int J Endocrinol. 2015;2015:343828.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Halfon P, Munteanu M, Poynard T. FibroTest-ActiTest as a non-invasive marker of liver fibrosis. Gastroenterol Clin Biol. 2008;32(6 Suppl 1):22–39.

    Article  PubMed  Google Scholar 

  155. Ratziu V, Massard J, Charlotte F, Messous D, Imbert-Bismut F, Bonyhay L, et al. Diagnostic value of biochemical markers (FibroTest-FibroSURE) for the prediction of liver fibrosis in patients with non-alcoholic fatty liver disease. BMC Gastroenterol. 2006;6:6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Lassailly G, Caiazzo R, Hollebecque A, Buob D, Leteurtre E, Arnalsteen L, et al. Validation of noninvasive biomarkers (FibroTest, SteatoTest, and NashTest) for prediction of liver injury in patients with morbid obesity. Eur J Gastroenterol Hepatol. 2011;23(6):499–506.

    Article  PubMed  Google Scholar 

  157. McPherson S, Stewart SF, Henderson E, Burt AD, Day CP. Simple non-invasive fibrosis scoring systems can reliably exclude advanced fibrosis in patients with non-alcoholic fatty liver disease. Gut. 2010;59(9):1265–9.

    Article  PubMed  Google Scholar 

  158. Shah AG, Lydecker A, Murray K, Tetri BN, Contos MJ, Sanyal AJ. Use of the Fib-4 index for non-invasive evaluation of fibrosis in nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2009;7(10):1104–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Musso G, Gambino R, Cassader M, Pagano G. Meta-analysis: natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity. Ann Med. 2011;43(8):617–49.

    Article  PubMed  Google Scholar 

  160. Treeprasertsuk S, Björnsson E, Enders F, Suwanwalaikorn S, Lindor KD. NAFLD fibrosis score: a prognostic predictor for mortality and liver complications among NAFLD patients. World J Gastroenterol. 2013;19(8):1219–29.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Lichtinghagen R, Pietsch D, Bantel H, Manns MP, Brand K, Bahr MJ. The Enhanced Liver Fibrosis (ELF) score: normal values, influence factors and proposed cut-off values. J Hepatol. 2013;59(2):236–42.

    Article  PubMed  Google Scholar 

  162. Guha IN, Parkes J, Roderick P, Chattopadhyay D, Cross R, Harris S, et al. Noninvasive markers of fibrosis in nonalcoholic fatty liver disease: validating the European liver fibrosis panel and exploring simple markers. Hepatology. 2008;47(2):455–60.

    Article  PubMed  Google Scholar 

  163. Calès P, Boursier J, Oberti F, Gallois Y, Rousselet M-C, Moal V, et al. [FibroMeters: a family of blood tests for liver fibrosis with high diagnostic performance and applicability in clinical practice]. Pathol Biol (Paris). 2009;57(6):459–62.

    Google Scholar 

  164. Cichoż-Lach H, Celiński K, Prozorow-Król B, Swatek J, Słomka M, Lach T. The BARD score and the NAFLD fibrosis score in the assessment of advanced liver fibrosis in nonalcoholic fatty liver disease. Med Sci Monit. 2012;18(12):CR735–40.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Lee TH, Han SH, Yang JD, Kim D, Ahmed M. Prediction of advanced fibrosis in nonalcoholic fatty liver disease: an enhanced model of BARD score. Gut Liver. 2013;7(3):323–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ruffillo G, Fassio E, Alvarez E, Landeira G, Longo C, Domínguez N, et al. Comparison of NAFLD fibrosis score and BARD score in predicting fibrosis in nonalcoholic fatty liver disease. J Hepatol. 2011;54(1):160–3.

    Article  PubMed  Google Scholar 

  167. Loaeza-del-Castillo A, Paz-Pineda F, Oviedo-Cárdenas E, Sánchez-Avila F, Vargas-Vorácková F. AST to platelet ratio index (APRI) for the noninvasive evaluation of liver fibrosis. Ann Hepatol. 2008;7(4):350–7.

    CAS  PubMed  Google Scholar 

  168. Ratziu V, Giral P, Charlotte F, Bruckert E, Thibault V, Theodorou I, et al. Liver fibrosis in overweight patients. Gastroenterology. 2000;118(6):1117–23.

    Article  CAS  PubMed  Google Scholar 

  169. Ampuero J, Aller R, Gallego-Durán R, Bañales J, Crespo J, Villar-Gomez E, et al. Hepamet score: a new non-invasive method for NAFLD-related fibrosis screening in clinical practice. J Hepatol. 2018;68:S97–8.

    Article  Google Scholar 

  170. Subasi CF, Aykut UE, Yilmaz Y. Comparison of noninvasive scores for the detection of advanced fibrosis in patients with nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol. 2015;27(2):137–41.

    Article  PubMed  Google Scholar 

  171. Adams LA, George J, Bugianesi E, Rossi E, De Boer WB, van der Poorten D, et al. Complex non-invasive fibrosis models are more accurate than simple models in non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2011;26(10):1536–43.

    Article  CAS  PubMed  Google Scholar 

  172. Sun W, Cui H, Li N, Wei Y, Lai S, Yang Y, et al. Comparison of FIB-4 index, NAFLD fibrosis score and BARD score for prediction of advanced fibrosis in adult patients with non-alcoholic fatty liver disease: a meta-analysis study. Hepatol Res. 2016;46(9):862–70.

    Article  CAS  PubMed  Google Scholar 

  173. Boursier J, Vergniol J, Guillet A, Hiriart J-B, Lannes A, Le Bail B, et al. Diagnostic accuracy and prognostic significance of blood fibrosis tests and liver stiffness measurement by FibroScan in non-alcoholic fatty liver disease. J Hepatol. 2016;65(3):570–8.

    Article  PubMed  Google Scholar 

  174. Siddiqui MS, Harrison SA, Abdelmalek MF, Anstee QM, Bedossa P, Castera L, et al. Case definitions for inclusion and analysis of endpoints in clinical trials for nonalcoholic steatohepatitis through the lens of regulatory science. Hepatology. 2018;67(5):2001–12.

    Article  PubMed  Google Scholar 

  175. Sanyal AJ, Abdelmalek MF, Suzuki A, Cummings OW, Chojkier M, EPE-A Study Group. No significant effects of ethyl-eicosapentanoic acid on histologic features of nonalcoholic steatohepatitis in a phase 2 trial. Gastroenterology. 2014;147(2):377–384.e1.

    Article  CAS  PubMed  Google Scholar 

  176. Neuschwander-Tetri BA, Loomba R, Sanyal AJ, Lavine JE, Van Natta ML, Abdelmalek MF, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 2015;385(9972):956–65.

    Article  CAS  PubMed  Google Scholar 

  177. Mudaliar S, Henry RR, Sanyal AJ, Morrow L, Marschall H-U, Kipnes M, et al. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology. 2013;145(3):574–582.e1.

    Article  CAS  PubMed  Google Scholar 

  178. Cusi K, Orsak B, Bril F, Lomonaco R, Hecht J, Ortiz-Lopez C, et al. Long-term pioglitazone treatment for patients with nonalcoholic steatohepatitis and prediabetes or type 2 diabetes mellitus: a randomized trial. Ann Intern Med. 2016;165(5):305–15.

    Article  PubMed  Google Scholar 

  179. Bril F, Kalavalapalli S, Clark VC, Lomonaco R, Soldevila-Pico C, Liu I-C, et al. Response to pioglitazone in patients with nonalcoholic Steatohepatitis with vs without type 2 diabetes. Clin Gastroenterol Hepatol. 2018;16(4):558–566.e2.

    Article  CAS  PubMed  Google Scholar 

  180. Friedman S, Sanyal A, Goodman Z, Lefebvre E, Gottwald M, Fischer L, et al. Efficacy and safety study of cenicriviroc for the treatment of non-alcoholic steatohepatitis in adult subjects with liver fibrosis: CENTAUR Phase 2b study design. Contemp Clin Trials. 2016;47:356–65.

    Article  PubMed  Google Scholar 

  181. Friedman SL, Ratziu V, Harrison SA, Abdelmalek MF, Aithal GP, Caballeria J, et al. A randomized, placebo-controlled trial of cenicriviroc for treatment of nonalcoholic steatohepatitis with fibrosis. Hepatology. 2018;67(5):1754–67.

    Article  CAS  PubMed  Google Scholar 

  182. Ratziu V, Harrison SA, Francque S, Bedossa P, Lehert P, Serfaty L, et al. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-α and -δ, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology. 2016;150(5):1147–1159.e5.

    Article  CAS  PubMed  Google Scholar 

  183. Polyzos SA, Kountouras J, Mantzoros CS, Polymerou V, Katsinelos P. Effects of combined low-dose spironolactone plus vitamin E vs vitamin E monotherapy on insulin resistance, non-invasive indices of steatosis and fibrosis, and adipokine levels in non-alcoholic fatty liver disease: a randomized controlled trial. Diabetes Obes Metab. 2017;19(12):1805–9.

    Article  CAS  PubMed  Google Scholar 

  184. Loomba R, Lawitz E, Mantry PS, Jayakumar S, Caldwell SH, Arnold H, et al. The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis: a randomized, phase 2 trial. Hepatology. 2017;67(2):549–59.

    Article  CAS  PubMed  Google Scholar 

  185. Chalasani N, Vuppalanchi R, Rinella M, Middleton MS, Siddiqui MS, Barritt AS, et al. Randomised clinical trial: a leucine-metformin-sildenafil combination (NS-0200) vs placebo in patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2018;47(12):1639–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Sanyal AJ, Cordonnier G, Brozek J, Roudot A, Deledicque S, Barbazanges M, et al. A new method including the quantification of circulating miRNAs allows the efficient identification of NASH at risk who should be treated. J Hepatol. 2016;64(2):S717.

    Article  Google Scholar 

  187. Harrison S, Praca C, Brozek J, Cordonnier G, Sudrik FB, Roudot A, et al. A new non-invasive diagnostic score to monitor change in disease activity and predict fibrosis evolution in patients with NASH. J Hepatol. 2018;66:S110.

    Article  Google Scholar 

  188. Hanf R, Pierre C, Zouher M, Cordonnier G, Brozek J, Praca E, et al. Validation of NIS4 algorithm for detection of NASH at risk of cirrhosis in 467 NAFLD patients prospectively screened for inclusion in the RESOLVE-IT trial. J Hepatol. 2018;68:S115–6.

    Article  Google Scholar 

Download references

Financial Support

This work was supported by NIH grants R01AT001576 (SCL and JMM) and R01DK092407 (SCL), the Agencia Estatal de Investigación of MINECO SAF 2017-88041R (JMM), MINECO-ISCiii PIE14/00031 (JMM), CIBERehd-ISCiii (JMM), Basque Government through the projects Hazitek ZL-2016/00444 and ZL-2017/00018 (PO), Etorgai ER-2015/00015 (CA), Plan de Promoción de la Innovación 2015 – Diputación Foral de Bizkaia, 6/12/IN/2015/00131 (CA) and Horizon 2020 Framework Program of the European Union (under grant agreement number 777377 for the project LITMUS (PO, JMM and CA)). We thank Spanish Ministry of Economy and Competitiveness MINECO for CIC bioGUNE Severo Ochoa Excellence Accreditation (SEV-2016-0644).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Alonso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iruarrizaga-Lejarreta, M. et al. (2019). Emerging Circulating Biomarkers for The Diagnosis and Assessment of Treatment Responses in Patients with Hepatic Fat Accumulation, Nash and Liver Fibrosis. In: Krentz, A., Weyer, C., Hompesch, M. (eds) Translational Research Methods in Diabetes, Obesity, and Nonalcoholic Fatty Liver Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-11748-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11748-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11747-4

  • Online ISBN: 978-3-030-11748-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics