Skip to main content

Mars Aerobraking Operations for ExoMars TGO: A Flight Dynamics Perspective

  • Chapter
  • First Online:
Space Operations: Inspiring Humankind's Future
  • 1092 Accesses

Abstract

This paper aims at giving a flight dynamics perspective on ExoMars Trace Gas Orbiter aerobraking operations, discussing the main challenges for both navigation and spacecraft commanding, describing the work-flow of activities within an operation cycle and presenting some results from the successful campaign, together with the most important lessons learnt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACSEQ:

ACtions SEQuence

AEBM:

AEroBraking Mode

APM:

Antenna pointing mechanism

ARD:

Atmospheric rate damping

ATB:

Avionics Test Bench

ATD:

Atmosphere detector

CM:

Carrier module

DCO:

Data cut-off

DM:

Descent module

DSM:

Deep space manoeuvres

DTCF:

Delayed TC files

EDM:

Entry, descent and landing demonstrator module

FCT:

Flight control team

FD:

Flight dynamics

FDIR:

Failure detection, isolation and recovery

FOP:

Flight operational procedures

FRM:

Flux reduction manoeuvres

GNC:

Guidance, navigation and control

HGA:

High-gain antenna

IFMS:

Intermediate frequency and modem system

IMU:

Inertial measurement unit

JPL:

Jet propulsion laboratory

LAPID:

Large angle proportional integral derivative

LTP:

Long-term planning

LST:

Local solar time

MCD:

Mars Climate Database

MarsGRAMM:

Mars Global Reference Atmospheric Model

MGS:

Mars Global Surveyor

MLI:

Multi-layer insulation

MOI:

Mars Orbit Insertion

MRO:

Mars Reconnaissance Orbiter

MTL:

Mission timeline

NOMP:

Nominal mode with propulsion

NOMR:

Nominal mode with reaction wheels

OBCP:

On-board control procedures

OBSW:

On-board software

OCM:

Orbit control mode

ODY:

Mars Odyssey

PMON/FMON:

Parameter/Functional monitoring

PLM:

Pericentre lowering manoeuvres

PRM:

Pericentre raising manoeuvres

RSP:

Rover and a surface science platform

RW:

Reaction wheel

SA:

Solar arrays

S/C:

Spacecraft

SIM:

Operational simulator

SPM:

Safe pop-up manoeuvres

STR:

Star trackers

SZA:

Sun zenith angle

TMTC:

Telemetry and telecommand

TGO:

Trace Gas Orbiter

VEX:

Venus Express

WOL:

Wheel off-loading

References

  1. Svedhem, H., & O’Flaherty, K. (2016). Exomars 2016 mission, brief description of TGO and Schiaparelli. ESA public report.

    Google Scholar 

  2. Yamaguchi, T., & Kahn, M. (2014, May). Mission design and navigation analysis of the ESA Exomars program. In 24th International Symposium on Space Flight Dynamics (ISSFD), Laurel, Maryland, USA.

    Google Scholar 

  3. Denis, M., et al. (2018, May). Thousand times through the atmosphere of Mars: Aerobraking the ExoMars trace gas orbiter. In SpaceOps 2018, Marseille, France.

    Google Scholar 

  4. Guilanya, R., & Companys, V. (2012, November). Operational approach for the Exomars aerobraking. In 23rd International Symposium on Space Flight Dynamics (ISSFD), Pasadena, California, USA.

    Google Scholar 

  5. Cassi, C., et al. (2017, September). The ExoMars 2016 mission flight performances until achievement of the 1-sol orbit. In 68th International Astronautical Congress (IAC), Adelaide, Australia.

    Google Scholar 

  6. Renault, H., et al. (2017, June). GNC design and in-flight GNC behaviour. In GNC 2017, Salzburg, Austria.

    Google Scholar 

  7. Giorgini, J., et al. (1995, March). Magellan aerobrake navigation. British Interplanetary Society Journal, 48(3).

    Google Scholar 

  8. Johnston, M. D., et al. (1999). The strategy for the second phase of aerobraking Mars Global Surveyor. AAS 99-303.

    Google Scholar 

  9. Esposito, P., et al. (1999). Navigating Mars Global Surveyor through the martian atmosphere: Aerobraking 2. In AAS 99-443, AAS/AIAA Astrodynamics Specialist Conference.

    Google Scholar 

  10. Smith, J. C., & Bell, J. L. (2005, May–June). 2001 Mars Odyssey aerobraking. Journal of Spacecraft and Rockets, 42(3).

    Google Scholar 

  11. Mase, R. A., Antreasian, P. G., Bell, J. L., Martin-Mur, T. J., & Smith J. C. (2002). The Mars Odyssey navigation experience. In AIAA 2002-4530, AIAA/AAS Astrodynamics Specialist Conference and Exhibit.

    Google Scholar 

  12. You, T. H., et al. (2007). Navigating Mars Reconnaissance Orbiter: Launch through primary science orbit. In AIAA 2008-6093, AIAA SPACE 2007 Conference & Exposition.

    Google Scholar 

  13. Long, S. M., et al. (2008). Mars Reconnaissance Orbiter aerobraking navigation operation. In AIAA 2008-3349, SpaceOps 2008.

    Google Scholar 

  14. Damiani, S., Garcia, J. M., Guilanya, R., Munoz, P., & Muller, M. (2015). Flight dynamics operations for Venus Express aerobraking campaign: A successful end of life experiment. In 25th International Symposium on Space Flight Dynamics ISSFD, Munich.

    Google Scholar 

  15. Kenworthy, J., Seale, E. H., & Dates, J. A. (2007). Autonomous fault protection orbit domain modeling in aerobraking. In 2007 IEEE Aerospace Conference, USA.

    Google Scholar 

  16. Young, B. (2018). Practical orbit determination for aerobraking with accumulated accelerometer data. In Junkins Dynamical Systems Symposium.

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge all colleagues in the FD team for interplanetary missions, as well as the FCT and all other ESA support teams, who contributed to the success of TGO’s aerobraking campaign. Special thanks to Robert Guilanya, Alfonso Rivero and David Jesch, who provided inputs for this chapter, as well as to TAS Industrial team, who provided valuable support and knowledge of TGO systems, within a smooth and fruitful collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Castellini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Castellini, F., Bellei, G., Godard, B. (2019). Mars Aerobraking Operations for ExoMars TGO: A Flight Dynamics Perspective. In: Pasquier, H., Cruzen, C., Schmidhuber, M., Lee, Y. (eds) Space Operations: Inspiring Humankind's Future. Springer, Cham. https://doi.org/10.1007/978-3-030-11536-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11536-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11535-7

  • Online ISBN: 978-3-030-11536-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics