Skip to main content

Scientific Research Related to Building Renovation

  • Chapter
  • First Online:
Integrative Approach to Comprehensive Building Renovations

Part of the book series: Green Energy and Technology ((GREEN))

  • 369 Accesses

Abstract

This chapter extends the previously presented theoretical background on the renovation process, cf. Chap. 3, beginning with an overview of the state of the art of the existing building renovation (Sect. 4.1), the state of the art of the structural renovation (Sect. 4.2) and finishing with a research on the energy-efficient renovation (Sect. 4.3) including a numerical analysis of the selected case study buildings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jensen PA, Maslesa E, Berg JB, Thuesen C (2018) 10 questions concerning sustainable building renovation. Build Environ 143:130–137

    Article  Google Scholar 

  2. Abdul Hamid A, Farsäter K, Wahlström A, Wallentén P (2018) Literature review on renovation of multifamily buildings in temperate climate conditions. Energy Build 172:414–431

    Article  Google Scholar 

  3. Ascione F, Bianco N, De Masi RF, Mauro GM, Vanoli GP (2017) Energy retrofit of educational buildings: Transient energy simulations, model calibration and multi-objective optimization towards nearly zero-energy performance. Energy Build 144:303–319

    Article  Google Scholar 

  4. Mikučionienė R, Martinaitis V, Keras E (2014) Evaluation of energy efficiency measures sustainability by decision tree method. Energy Build 76:64–71

    Article  Google Scholar 

  5. Dodoo A, Tettey UYA, Gustavsson L (2017) Influence of simulation assumptions and input parameters on energy balance calculations of residential buildings. Energy 120:718–730

    Article  Google Scholar 

  6. Dodoo A, Tettey UYA, Gustavsson L (2017) On input parameters, methods and assumptions for energy balance and retrofit analyses for residential buildings. Energy Build 137:76–89

    Article  Google Scholar 

  7. Irulegi O, Ruiz-Pardob A, Serrac A, Salmerónd JM, Vega R (2017) Retrofit strategies towards net zero energy educational buildings: a case study at the University of the Basque Country. Energy Build 144:387–400

    Article  Google Scholar 

  8. Santangelo A, Yan D, Feng X, Tondelli S (2018) Renovation strategies for the Italian public housing stock: applying building energy simulation and occupant behaviour modelling to support decision-making process. Energy Build 167:269–280

    Article  Google Scholar 

  9. Thuvander L, Femenías P, Mjörnell K, Meiling P (2012) Unveiling the process of sustainable renovation. Sustainability 4:1188–1213

    Article  Google Scholar 

  10. Nielsen AN, Jensen RL, Larsen TS, Nissen SB (2016) Early stage decision support for sustainable building renovation—a review. Build Environ 103:165–181

    Article  Google Scholar 

  11. Lee SH, Hong T, Piette MA, Taylor-Lange SC (2015) Energy retrofit analysis toolkits for commercial buildings: a review. Energy 89:1087–1100

    Article  Google Scholar 

  12. Vilches A, Garcia-Martinez A, Sanchez-Montãnes B (2017) Life cycle assessment (LCA) of building refurbishment: a literature review. Energy Build 135:286–301

    Article  Google Scholar 

  13. Andrić I, Pina A, Ferrão P, Lacarrière B, Le Corre O (2017) The impact of renovation measures on building environmental performance: an emergy approach. J Clean Prod 162:776–790

    Article  Google Scholar 

  14. EN 15804 (2012) Sustainability of construction works—environmental product declarations—core rules for the product category of construction products. EN 15804:2012

    Google Scholar 

  15. Simson R, Fadejeva J, Kurnitskia J, Kestic J, Lautsoc P (2016) Assessment of retrofit measures for industrial halls: energy efficiency and renovation budget estimation. Energy Procedia 96:124–133

    Article  Google Scholar 

  16. Bertone E, Sahin O, Stewart RA, Zou P, Alam M, Blair E (2016) State-of-the-art review revealing a roadmap for public building water and energy efficiency retrofit projects. Int J Sustain Built Environ 5:526–548

    Article  Google Scholar 

  17. Tan B, Yavuz Y, Otay EN, Çamlıbel E (2016) Optimal selection of energy efficiency measures for energy sustainability of existing buildings. Comput Oper Res 6:258–271

    Article  MATH  Google Scholar 

  18. Dodoo A, Gustavsson L, Tettey UYA (2017) Final energy savings and cost-effectiveness of deep energy renovation of a multi-storey residential building. Energy 135:563–576

    Article  Google Scholar 

  19. Ballarini I, Corrado V, Madonna F, Paduos S, Ravasio F (2017) Energy refurbishment of the Italian residential building stock: energy and cost analysis through the application of the building typology. Energy Policy 105:148–160

    Article  Google Scholar 

  20. EN 15643-3 (2012) Sustainability of construction works—assessment of buildings—part 3: framework for the assessment of social performance. EN 15643-3:2012

    Google Scholar 

  21. Craft W, Ding L, Prasad D, Partridge L, Else D (2017) Development of a regenerative design model for building retrofits. Procedia Eng 180:658–668

    Article  Google Scholar 

  22. Zuhaib S, Manton R, Griffin C, Hajdukiewicz M, Keane MM, Goggins J (2018) An indoor environmental quality (IEQ) assessment of a partially-retrofitted university building. Build Environ 139:69–85

    Article  Google Scholar 

  23. Al horr Y, Arif M, Katafygiotou M, Mazroei A, Kaushik A, Elsarrag E (2016) Impact of indoor environmental quality on occupant well-being and comfort: a review of the literature. Int J Sustain Built Environ 5:1–11

    Article  Google Scholar 

  24. Eliopoulou E, Mantziou E (2017) Architectural energy retrofit (AER): an alternative building’s deep energy retrofit strategy. Energy Build 150:239–252

    Article  Google Scholar 

  25. Leivo V, Kiviste M, Aaltonen A, Turunen M, Haverinen-Shaughnessy U (2018) Impacts of energy retrofits on hygrothermal behavior of Finnish multi-family buildings. Energy Procedia 132:700–704

    Article  Google Scholar 

  26. Puglisi V, Invernale A (2016) Mansard roof, attics and garrets and the convenience of investment in order to contain land consumption. Procedia Eng 161:1428–1432

    Article  Google Scholar 

  27. Wu Z, Wang B, Xia X (2016) Large-scale building energy efficiency retrofit: concept, model and control. Energy 109:456–465

    Article  Google Scholar 

  28. Brøgger M, Wittchen KB (2018) Estimating the energy-saving potential in national building stocks—a methodology review. Renew Sustain Energy Rev 82:1489–1496

    Article  Google Scholar 

  29. Krarti M, Dubey K (2018) Review analysis of economic and environmental benefits of improving energy efficiency for UAE building stock. Renew Sustain Energy Rev 82:14–24

    Article  Google Scholar 

  30. Webb AL (2017) Energy retrofits in historic and traditional buildings: a review of problems and methods. Renew Sustain Energy Rev 77:748–759

    Article  Google Scholar 

  31. Galatioto A, Ciulla G, Ricciu R (2017) An overview of energy retrofit actions feasibility on Italian historical buildings. Energy 137:991–1000

    Article  Google Scholar 

  32. Loga T, Stein B, Diefenbach N (2016) TABULA building typologies in 20 European countries—making energy-related features of residential building stocks comparable. Energy Build 132:4–12

    Article  Google Scholar 

  33. Kragh J, Wittchen KB (2014) Development of two Danish building typologies for residential buildings. Energy Build 68:79–86

    Article  Google Scholar 

  34. Dascalaki EG, Balaras CA, Kontoyiannidis S, Droutsa KG (2016) Modeling energy refurbishment scenarios for the Hellenic residential building stock towards the 2020 & 2030 targets. Energy Build 132:74–90

    Article  Google Scholar 

  35. Csoknyai T, Hrabovszky-Horváth S, Georgiev Z, Jovanovic-Popovic M, Stankovic B, Villatoro D, Szendrő G (2016) Building stock characteristics and energy performance of residential buildings in Eastern-European countries. Energy Build 132:39–52

    Article  Google Scholar 

  36. Economidou M, Atanasiu B, Despret C, Economidou M, Maio J, Nolte I, Rapf O (2011) Europe’s buildings under the microscope. Buildings Performance Institute Europe, Brussels. Available via http://bpie.eu/wp-content/uploads/2015/10/HR_EU_B_under_microscope_study.pdf. Accessed 31 Aug 2018

  37. Balvedi FB, Ghisi E, Lamberts R (2018) A review of occupant behaviour in residential buildings. Energy Build 174:495–505

    Article  Google Scholar 

  38. Ekström T, Bernardo R, Blomsterberg A (2018) Cost-effective passive house renovation packages for Swedish single-family houses from the 1960s and 1970s. Energy Build 161:89–102

    Article  Google Scholar 

  39. Bjørneboe MG, Svendsen S, Heller A (2017) Evaluation of the renovation of a Danish single-family house based on measurements. Energy Build 150:189–199

    Article  Google Scholar 

  40. Ruparathna R, Hewage K, Sadiq R (2016) Improving the energy efficiency of the existing building stock: a critical review of commercial and institutional buildings. Renew Sustain Energy Rev 53:1032–1045

    Article  Google Scholar 

  41. Ferrari S, Beccali M (2017) Energy-environmental and cost assessment of a set of strategies for retrofitting a public building toward nearly zero-energy building target. Sustain Cities Soc 32:226–234

    Article  Google Scholar 

  42. Alonso C, Oteiza I, Martín-Consuegra F, Frutos B (2017) Methodological proposal for monitoring energy refurbishment. Indoor environmental quality in two case studies of social housing in Madrid, Spain. Energy Build 155:492–502

    Article  Google Scholar 

  43. Földváry V, Bekö G, Langer S, Arrhenius K, Petráš D (2017) Effect of energy renovation on indoor air quality in multifamily residential buildings in Slovakia. Build Environ 122:363–372

    Article  Google Scholar 

  44. Hilliaho K, Nordquist B, Wallentèn P, Abdul Hamid A, Lahdensivu J (2016) Energy saving and indoor climate effects of an added glazed façade to a brick wall building: case study. J Build Eng 7:246–262

    Article  Google Scholar 

  45. Friedman C, Becker N, Erell E (2014) Energy retrofit of residential building envelopes in Israel: a cost benefit analysis. Energy 77:183–193

    Article  Google Scholar 

  46. Friess WA, Rakhshan K (2017) A review of passive envelope measures for improved building energy efficiency in the UAE. Renew Sustain Energy Rev 72:485–496

    Article  Google Scholar 

  47. Oropeza-Perez I, Østergaard PA (2018) Active and passive cooling methods for dwellings: a review. Renew Sustain Energy Rev 82:531–544

    Article  Google Scholar 

  48. Fasiuddin M, Budaiwi I (2011) HVAC system strategies for energy conservation in commercial buildings in Saudi Arabia. Energy Build 43:3457–3466

    Article  Google Scholar 

  49. ul Haq MA, Hassan MY, Abdullah H, Rahman HA, Abdullah MP, Hussin F, Said DM (2014) A review on lighting control technologies in commercial buildings, their performance and affecting factors. Renew Sustain Energy Rev 33:268–279

    Article  Google Scholar 

  50. Niemelä T, Kosonen R, Jokisalo J (2017) Cost-effectiveness of energy performance renovation measures in Finnish brick apartment buildings. Energy Build 137:60–75

    Article  Google Scholar 

  51. Pukhkal V, Murgul V, Garifullin M (2015) Reconstruction of buildings with a superstructure mansard: options to reduce energy intensity of buildings. Procedia Eng 117:624–627

    Article  Google Scholar 

  52. The city above the city—new international design competition (2016). Metsä Wood. Available via http://www.multivu.com/players/uk/7875651-metsa-wood-the-cityabove-the-city/. Accessed 16 Dec 2016

  53. Konstantinou T, Knaack U (2011) Refurbishment of residential buildings: a design approach to energy-efficiency upgrades. Procedia Eng 21:666–675

    Article  Google Scholar 

  54. Konstantinou T, Knaack U (2013) An approach to integrate energy efficiency upgrade into refurbishment design process, applied in two case-study buildings in Northern European climate. Energy Build 59:301–309

    Article  Google Scholar 

  55. Soikkeli A (2016) Additional floors in old apartment blocks. Energy Procedia 96:815–823

    Article  Google Scholar 

  56. Jaksch S, Franke A, Österreicher D, Treberspurg M (2016) A systematic approach to sustainable urban densification using prefabricated timber-based attic extension modules. Energy Procedia 96:638–649

    Article  Google Scholar 

  57. Jaksch S, Franke A, Österreicher D, Treberspurg M (2016) A timber based attic extension system for sustainable urban densification. In: WCTE e-book, pp 5598–5606

    Google Scholar 

  58. Špegelj T, Žegarac Leskovar V, Premrov M (2016) Application of the timber-glass upgrade module for energy refurbishment of the existing energy-inefficient multi-family buildings. Energy Build 116:362–375

    Article  Google Scholar 

  59. Špegelj T, Premrov M, Leskovar Žegarac (2017) Development of the timber-glass upgrade module for the purpose of its installation on energy-inefficient buildings in the refurbishment process. Energ Effi 10:973–988

    Article  Google Scholar 

  60. Lešnik M, Premrov M, Leskovar Žegarac (2018) Design parameters of the timber-glass upgrade module and the existing building: impact on the energy-efficient refurbishment process. Energy 162:1125–1138

    Article  Google Scholar 

  61. Žegarac Leskovar V, Lešnik M, Premrov M (2018) Building refurbishment by vertical extension with lightweight structural modules. Paper presented at the 1st Latin American conference on sustainable development of energy, water and environment systems, Brazil, Rio de Janeiro, 28–31 Jan 2018

    Google Scholar 

  62. Kolbitsch A (1989) Altbaukonstruktionen: Charakteristika Rechenwerte Sanierungsansätze. Springer, Vienna

    Book  Google Scholar 

  63. Lißner AK, Rug W (2013) Holzbausanierung: Grundlagen und Praxis der sicheren Ausführung. Springer-Verlag

    Google Scholar 

  64. Brezar V (2011) Pragmatično graditeljstvo ali sindrom 4 metrov [Pragmatic construction or a 4-meter syndrome]. Arhitektura, Raziskave 2011(2):85

    Google Scholar 

  65. Unuk Ž, Premrov M, Žegarac Leskovar V (2017) A brief insight into timber floors in Slovenia with a numerical case study of an existing timber floor. Int J Constr Res Civ Eng 3(4):11–19

    Google Scholar 

  66. European Committee for Standardization CEN/TC 250/SC5 N173 (2005) EN 1995-1-1:2005 Eurocode 5: design of timber structures, part 1-1 general rules and rules for buildings. Brussels

    Google Scholar 

  67. European Committee for Standardization CEN/TC 250/SC5 N173 (2002) EN 1991-1-1: Eurocode 1: actions on structures—part 1-1: general actions—densities, self-weight, imposed loads for buildings. Brussels

    Google Scholar 

  68. Frangi A, Fontana M (2003) Elasto-plastic model for timber–concrete composite beams with ductile connection. Struct Eng Int 13(1):47–57

    Article  Google Scholar 

  69. Tajnik M, Premrov M, Dobrila P, Bedenik B (2011) Parametric study of composite T-beam. Proc ICE—Struct Build 164(5):345–353

    Article  Google Scholar 

  70. Premrov M, Dobrila P (2012) Experimental analysis of timber-concrete composite beam strengthened with carbon fibres. Constr Build Mater 37:499–506

    Article  Google Scholar 

  71. Holschemacher K, Klotz S, Weibe D (2002) Application of steel fibre reinforced concrete for timber-concrete composite constructions. Lacer 7:161–170

    Google Scholar 

  72. Kenel A (2000) Zur Berechnung von Holz/Beton-Verbundkonstruktionen. Abteilung Holz, Arbeitsbericht 115/39, EMPA Dubendorf

    Google Scholar 

  73. Schanzlin S (2003) Zum Langzeitverhalten von Brettstapel-Beton-Verbunddecken. Institut fur Konstruktion und Entwurf, Stuttgart

    Google Scholar 

  74. European Committe for Standardization CEN/TC 250 (2004) EN 1992-1-1 Eurocode 2: design of concrete structures, part 1-1 general rules and rules for buildings. Brussels

    Google Scholar 

  75. Kaufmann H, Krötsch S, Winter S (2018) Manual of multi-storey timber construction. DETAIL Business Information GmbH

    Google Scholar 

  76. Unuk Ž, Žegarac Leskovar V, Premrov M (2018) Strengthening of timber floors with CLT panels—a numerical study. In: Sunara Kusić M (ur.), Galešić M (ur.) Zbornik radova, Šesti skup mladih istraživača iz područja građevinarstva i srodnih tehničkih znanosti—Zajednički temelji 2018—uniSTem. Osijek, Split

    Google Scholar 

  77. Dagher HJ, Breton J (1998) Creep behaviour of FRP-reinforced glulam beams. In: Proceedings of 5th world conference on timber engineering, vol. 2. Lousanne

    Google Scholar 

  78. Johns KC, Lacroix S (2000) Composite reinforcement of timber in bending. Can J Civ Eng 27(5):899–906

    Article  Google Scholar 

  79. Johns KC, Racin P (2001) Composite reinforcement of timber in bending. Conference Lahti 2001—innovative wooden structures and bridges. IABSE-AIPC-IVBH 85:549–554

    Google Scholar 

  80. Bergmeister K, Luggin W (2001) Innovative strengthening of timber structures using carbon fibres. IABSE conference Lahti 2001—innovative wooden structures and bridges. IABSE-AIPC-IVBH 85:361–366

    Google Scholar 

  81. Kent S, Tingley D (2001) Structural evaluation of fiber reinforced hollow wood beams. IABSE conference Lahti 2001—innovative wooden structures and bridges. IABSE-AIPC-IVBH 85:367–372

    Google Scholar 

  82. Dourado N, Pereira FAM, de Moura MFSF, Morais JJL (2012) Repairing wood beams under bending using carbon-epoxy composites. Eng Struct 34:342–350

    Article  Google Scholar 

  83. Stevens ND, Criner GK (2000) Economic analysis of fiber-reinforced polymer wood beams. University of Maine

    Google Scholar 

  84. Franke S, Franke B, Harte AM (2015) Failure modes and reinforcement techniques for timber beams—state of the art. Constr Build Mater 97:2–13

    Article  Google Scholar 

  85. Gubana A (2015) State-of-the-art report on high reversible timber to timber strengthening interventions on wooden floors. Constr Build Mater 97:25–33

    Article  Google Scholar 

  86. Sika (2003) Sicher bauen mit System. Technische Merkblätter, Ausgabe 5

    Google Scholar 

  87. Piazza M, Baldessari C, Tomasi R, Acler E (2008) Behaviour of refurbished timber floors characterized by different in-plane stiffness. In: D’Ayala D, Fodde E (eds) Structural analysis of historic construction. CRC Press, Boca Raton

    Google Scholar 

  88. Regione Autonoma Friuli-Venezia Giulia–Segreteria (1980) Generale Straordinaria: Legge Regionale 20 giugno 1977, n. 30—Recupero statico e funzionale degli edifici. Documento tecnico n. 2 DT2: Raccomandazioni per la riparazione strutturale degli edifici in muratura. Gruppo Disciplinare Centrale, maggio 1980

    Google Scholar 

  89. Parisi MA, Piazza M (2015) Seismic strengthening and seismic improvement of timber structures. Constr Build Mater 97:55–66

    Article  Google Scholar 

  90. Costa A, Guedes JM, Varum H (2013) Structural rehabilitation of old buildings, vol. 2. Springer

    Google Scholar 

  91. Tomaževič M (2009) Stavbe kulturne dediscine in potresna odpornost : kaj smo se naucili? [Heritage masonry buildings and seismic resistance : what did we learn?] Gradbeni vestnik 58

    Google Scholar 

  92. Valluzzi MR, Garbin E, Dalla Benetta M, Modena M (2008) Experimental assessment and modeling of in-plane behaviour of timber floors. In: D’Ayala D, Fodde E (eds) Proceedings of the VI international conference on structural analysis of historic construction, SAHC 08, Bath, UK, 2–4 July 2008, pp 755–762

    Google Scholar 

  93. Valluzzi MR, Garbin E, Dalla Benetta M, Modena M (2010) In-plane strengthening of timber floors for the seismic improvement of masonry buildings. In: Ceccotti A, Van de Kuilen JW (eds) 11th world conference on timber engineering WCTE 2010, Riva del Garda, TN, Italy, 20–24 Jun 2010

    Google Scholar 

  94. Fajfar P, Marušić D, Peruš I (2005) Torsional effects in the pushover-based seismic analysis of buildings. J Earthquake Eng 9(6):831–854

    Google Scholar 

  95. Lee HS, Hwang KR (2014) Torsion design implications from shake-table responses of an RC low-rise building model having irregularities at the ground story. Earthquake Eng Struct Dynam 44(6):907–927

    Article  Google Scholar 

  96. Pasticier L, Amadio C, Fragiocomo M (2007) Non-linear seismic analysis and vulnerability evaluation of a masonry building by means of the SAP2000 V.10 code. Earthquake Eng Struct Dynam 37(3):467–485

    Article  Google Scholar 

  97. Roca P, Cervera M, Gariup G, Pela L (2010) Structural analysis of masonry historical constructions. Classical and advanced approaches. Arch Comput Meth Eng 17(3):299–325

    Google Scholar 

  98. Asteris PG, Chronopoulos MP, Chrysostomou CZ, Plevris V, Kyriakides N, Silva V (2014) Seismic vulnerability assessment of historical masonry structural systems. Eng Struct 62–63:118–134

    Article  Google Scholar 

  99. Tomaževič M (1999) Earthquake-resistant design of masonry buildings (Series on innovation in structures and construction, vol. 1). Imperial College Press, London, XII, p 268

    Google Scholar 

  100. Branco M, Guerreiro LM (2011) Seismic rehabilitation of historical masonry buildings. Eng Struct 33(5):1626–1634

    Article  Google Scholar 

  101. Šušteršič I, Fragiacomo M, Dujič B (2012) Influence of the connections behavior on the seismic resistance of multi-storey crosslam buildings. In: World conference on timber engineering, Auckland, 16–19 Jul 2012

    Google Scholar 

  102. Šušteršič I (2017) Strengthening of buildings with cross-laminated timber plates. PhD thesis (in Slovenian), University of Ljubljana, Faculty of Civil Engineering and Geodesy, Ljubljana

    Google Scholar 

  103. Žegarac Leskovar V, Premrov M (2013) Energy-efficient timber-glass houses. Springer, London, Heidelberg, New York, Dordrecht

    Book  Google Scholar 

  104. Dobrila P, Premrov M (2003) Reinforcing methods for composite timber frame-fiberboard wall panels. Eng Struct 25(11):1369–1376

    Article  Google Scholar 

  105. Premrov M (2008) Sport Hall Rogla, Case study no. 13. In: Educational materials for designing and testing of timber structures—TEMTIS, case studies, instruction handbook. VŠB-TU, Fakulta stavební, Ostrava. http://fast10.vsb.cz/temtis/documents/Instruction_13_Rogla.pdf

  106. Premrov M, Dobrila P, Bedenik BS (2004) Analysis of timber framed walls coated with CFRP strips strengthened fibre-plaster boards. Int J Solids Struct 41(24/25):7035–7048

    Article  MATH  Google Scholar 

  107. Premrov M, Dobrila P (2008) Modelling of fastener flexibility in CFRP strengthened timber-framed walls using modified γ-method. Eng Struct 30(2):368–375

    Article  MATH  Google Scholar 

  108. Jančar J (2016) Seismic resistance of existing buildings with added light timber structure stories (in Slovenian). PhD thesis, University of Maribor, Faculty of Civil Engineering, Transportation Engineering and Architecture, Maribor

    Google Scholar 

  109. European Committee for Standardization CEN/TC 250/SC5 N173 (2005) EN 1998-1: Eurocode 8: design of structures for earthquake—part 1: general rules, seismic actions and rules for buildings. Brussels

    Google Scholar 

  110. Vukobratović V, Fajfar P (2015) A method for the direct determination of approximate floor response spectra for SDOF inelastic structures. Bull Earthq Eng 13(5):1405–1424

    Article  Google Scholar 

  111. Premrov M, Dujič B, Ber B (2013) Glazing influence on the seismic resistance of prefabricated timber-framed buildings. In: Belis J (ur.), Louter C (ur.) COST action TU0905 mid-term conference on structural glass. CRC Press, Boca Raton, pp 25–32

    Google Scholar 

  112. Premrov M, Serrano E, Winter W, Fadai A, Nicklisch F, Dujič B, Šušteršič I, Brank B, Štrukelj A, Držečnik M, Buyuktaskin HA, Erol G, Ber B (2015) Workshop report “WP 6: testing on life-size specimen components: shear walls, beams and columns including long-term behaviour”: woodwisdom-net, research project, load bearing timber-glass-composites, 2012–2014, p 151

    Google Scholar 

  113. Ceroni F, Ascione F, de Masi RF, de’ Rossi F, Pecce MR (2015) Multidisciplinary approach to structural/energy diagnosis of historical buildings: a case study. In: The 7th international conference on applied energy—ICAE2015. Energy Procedia 75:1325–1334

    Google Scholar 

  114. Lešnik M, Premrov M, Žegarac Leskovar V (2018) The sustainable approach to building refurbishment: energy efficiency of individual refurbishment measures and refurbishment packages. In: Hrast A (ur.), Mulej M (ur.), Glavič P (ur.) Družbena odgovornost in trajnostni razvoj v znanosti, izobraževanju in gospodarstvu: zbornik prispevkov [Social responsibility and sustainable development in science, education and business], Maribor

    Google Scholar 

  115. PURES (2010) Pravilnik o učinkoviti rabi energije v stavbah. Uradni list RS, 52/2010

    Google Scholar 

  116. Passive House Planning Package programme PHPP version 8.5. Passive House Institute, Darmstadt, Germany

    Google Scholar 

  117. EN 13790:2008 (2008) Energy performance of buildings—calculation of energy use for space heating and cooling. International Organization for Standardization

    Google Scholar 

  118. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644

    Article  Google Scholar 

  119. Meteonorm Software. Meteotest, Meteonorm 7.0, global meteorological database for engineers, planners and education, Bern, Switzerland. http://www.meteonorm.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vesna Žegarac Leskovar .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lešnik, M., Žegarac Leskovar, V., Premrov, M. (2019). Scientific Research Related to Building Renovation. In: Integrative Approach to Comprehensive Building Renovations. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-11476-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11476-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11475-6

  • Online ISBN: 978-3-030-11476-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics