Skip to main content

Cryocoolers for Superconducting Generators

  • Chapter
  • First Online:
Cryocoolers

Part of the book series: International Cryogenics Monograph Series ((ICMS))

Abstract

Historically, the cooling of superconducting generators has been an immensely complex and expensive undertaking. The process requires large, high-power, stationary helium liquefaction plants, usually situated separately from a generator, using long transfer lines to supply a continuous liquid helium flow to the generator. The lack of a suitable, economically viable cryogenic infrastructure and the resulting technical challenges, e.g., the need for a rotary transfer coupling, proved to be stumbling blocks on the path to successful commercialization. As of today, and nearly 50 years later, initial generator cooldown time, coupled with mean time between failure service requirement and operational recooling after an outage are still the main cryogenic concerns. The following chapter touches briefly on the early beginnings of the process and outlines the technological efforts and progress made in this respect until now. It further illustrates how the exceptional modularity of today’s cryocoolers, as manifested by their siteability, by the option of combining cryocoolers with different cooling capacities depending on their cryogenic system design and by their greatly improved, long maintenance intervals, enables the advancement of superconducting generator technology, accelerating its market readiness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DeSorbo W, Healy WA (1964) The intermediate state of some superconductors. Cryogenics 4:257–323

    Article  ADS  Google Scholar 

  2. DeSorbo W (1964) The influence of impurities and solutes (primarily zirconium) on the high-current-carrying, high-field Nb3Sn superconductor. Cryogenics 4:218–232

    Article  ADS  Google Scholar 

  3. Buchhold TA (1965) Three-phase motor with superconductive bearings. Cryogenics 5:216–219

    Article  ADS  Google Scholar 

  4. Buchhold TA (1964) Superconductive power supply and its application for electrical flux pumping. Cryogenics 4:212–217

    Article  ADS  Google Scholar 

  5. Buchhold TA, Darrel B (1965) Superconductive helium pump. Cryogenics 5:109

    Article  Google Scholar 

  6. DOE Cooperative Agreement no. DE-FC36-02GO11100

    Google Scholar 

  7. Air Force Contract FA8650-04-G-2466

    Google Scholar 

  8. Nusbaum M GE Power, private communication

    Google Scholar 

  9. Kalsi S, Weeber K (2004) Development status of rotating machines employing superconducting field windings. Proc IEEE 92(10):1688–1704

    Article  Google Scholar 

  10. Andvig TA (1956) Rotating rig experiments on the effectiveness of the closed thermosiphon system for the cooling of turbine motor blades. Pametrada contract report # C108

    Google Scholar 

  11. Morris WD (1984) Heat transfer and fluid flow in rotating cooling channels. Research Studies Press, Wiley, Chichester

    Google Scholar 

  12. Lock GSH (1992) The tubular thermosiphon. Oxford Engineering Science, vol 33, Oxford University Press, Oxford

    Google Scholar 

  13. Mori Y, Nakayama W (1967) Forced convective heat transfer in a straight pipe rotating about a parallel axis. Int J Heat Mass Trans 10:1179

    Article  Google Scholar 

  14. Hofmann A (1980) Self-regulating transfer modes of liquid helium to the rotor of a superconducting generator. Primary report no. 08.01.03P0ZA

    Google Scholar 

  15. Schnapper C (1978) Wärmetransport und Wärmebeürgang mit Helium in rotierenden Kanlen. Dissertation, KFK report 2654

    Google Scholar 

  16. Komarek P (1995) Hochstromanwendung der Supraleitung, Teubner Studienbücher, p 245

    Google Scholar 

  17. Hofmann A (1981) Self-regulating transfer modes of liquid helium to a rotor of a superconducting generator. Cryogenics 21:372–376

    Article  ADS  Google Scholar 

  18. Stautner W, Xu M, Amm K (2014) Hydrogen cooling options for MgB2-based superconducting systems. AIP Conf. Proc. 1573:82

    Article  ADS  Google Scholar 

  19. Stautner W, Amm K, Xu M (2015) Plenary talk 1, cooling systems for HTS applications - overview and critical assessment. International workshop on cooling systems for HTS, (1st IWC-HTS), Matsue, JP

    Google Scholar 

  20. Stautner W (2013) Energy & power panel talk at New York state. Superconductor technology summit, Albany

    Google Scholar 

  21. Köhler JWL (1965) The Stirling refrigeration cycle. Sci Am 212:119–127

    Article  Google Scholar 

  22. Dioguardi F, Stirling cryogenics, DH Industries BV, private communication

    Google Scholar 

  23. Stautner W (2017) Remote actuated cryocooler for SC generator and method of assembly the same. US 9,570,220 B2

    Google Scholar 

  24. Stautner W (2016) Special topics in cryostat design. In: Weisend JG (II) (ed) Cryostat design, chapter 7. Springer, New York

    Google Scholar 

  25. Stautner W, Sivasubramaniam K, Laskaris ET, Mine S, Rochford J, Budesheim E, Amm K (2011) A cryo-free 10 T high-field magnet system for a novel superconducting application. IEEE Trans Appl Supercond 21:2225–2228

    Article  ADS  Google Scholar 

  26. Stautner W, Mine S, Sivasubramaniam K, Rochford J, Budesheim E, Amm K (2011) A cryo-free 10 T high-field magnet system for a novel superconducting application. In: Experimental results, IEEE, international magnet technology conference MT22, Marseille

    Google Scholar 

  27. Heim JR (1971) The Heim column, National Accelerator Laboratory. Report TM.334A, pp 1–21

    Google Scholar 

  28. Hartwig G (1995) Support elements with extremely negative thermal expansion. Cryogenics 35:717–718

    Article  ADS  Google Scholar 

  29. Sun J, Sanz S, Neumann H (2015) Conceptual design and thermal analysis of a modular cryostat for one single coil of a 10 MW offshore superconducting wind turbine. IOP Conf Ser 101:012088

    Article  Google Scholar 

  30. Sun J, Ramalingam R, Santiago S, Neumann H (2016) Preliminary test of the prototype modular cryostat for a 10 MW offshore superconducting wind turbine. In: ICEC 2016, New Delhi

    Google Scholar 

  31. Sun J, private communication

    Google Scholar 

  32. Muoz G, Merino JM et al (2012) Direct-action superconducting synchronous generator for a wind turbine. Patent application US 20120306212

    Google Scholar 

  33. Jakob G, Lizon JL (2010) Advanced high-cooling power 2-stage Gifford-McMahon refrigerator systems. In: Proceedings of the SPIE 7739, modern technologies in space- and ground-based telescopes and instrumentation, 77393I

    Google Scholar 

  34. Kalsi S (2014) Superconducting wind turbine generator employing MgB2 windings both on rotor and stator. IEEE Trans Appl Supercond 24(1):5201907

    Article  Google Scholar 

  35. Yuan J, Winn P (2015) Cooling system for HTS motors. International workshop on cooling systems for HTS, (IWC-HTS), Matsue

    Google Scholar 

  36. Sivasubramaniam K, Zhang T, Lokhandwalla M, Laskaris ET, Bray JW, Gerstler B, Shah MR et al (2009) Development of a high speed HTS generator for airborne applications. IEEE Trans Appl Supercond 19(3):1656–1661

    Article  ADS  Google Scholar 

  37. Frank M et al (2003) Long-term operational experience with first Siemens 400 kW HTS machine in diverse configurations. IEEE Trans Appl Supercond 13(2):2120–2123

    Article  ADS  Google Scholar 

  38. Nick W, Siemens CT (2005) Superconducting motors and generators. In: SCENET, Finland

    Google Scholar 

  39. Nick W, Grundmann J, Frauenhofer J (2012) Test results from Siemens low-speed, high-torque HTS machine and description of further steps towards commercialization of HTS machines. Phys C: Supercond 482(20):105–110

    Article  ADS  Google Scholar 

  40. Bumby CW, Badcock RA, Sung HJ et al (2016) Development of a brushless HTS exciter for a 10 kW HTS synchronous generator. Supercond Sci Technol 29:024008

    Article  ADS  Google Scholar 

  41. Ackermann RA, Grey DA, Funuyama S, Ito K (2003) Cryogenic refrigerator evaluation for medical and rotational machine applications. Cryocoolers 12:805–811

    Article  Google Scholar 

  42. Laskaris ET, Ackermann RA (2002), Cryogenic cooling refrigeration system for rotor having a high temperature superconducting field winding and method, US6438969

    Google Scholar 

  43. van Lammeren JA (1941) Technik der tiefen Temperaturen. Springer, New York

    Book  Google Scholar 

  44. Takahashi M, Iwai S, Miyazaki H, Tosaka T et al (2017) Design and test results of a cryogenic cooling system for a 25 T cryogen-free superconducting magnet. IEEE Trans Appl Supercond. https://doi.org/10.1109/TASC.2017.2673762

    Book  Google Scholar 

  45. Trollier T, Tanchon J, Icart Y, Ravex A (2014) High capacity 30 K remote helium cooling loop. In: AIP conference proceedings, vol 1573, pp 1461–1466

    Article  ADS  Google Scholar 

  46. Vermeulen H (2013) Cryogenic circulators: the solution for cooling problems? Cold Facts 29(2):49–48

    Google Scholar 

  47. Fair R, Lewis C, Eugene J, Ingles M (2010) Development of an HTS hydroelectric power generator for the Hirschaid Power Station. J Phys: Conf Ser 234:032008

    Google Scholar 

  48. Vermeulen H (2016) DH Industries USA Inc, private communication

    Google Scholar 

  49. Furuse M, Fuchino S (2016) Development of a cooling system for superconducting wind turbine. Cryogenics, 80:199–203. https://doi.org/10.1016/j.cryogenics.2016.05.009

    Article  ADS  Google Scholar 

  50. Krafft G, Zahn G (1978) A reciprocating liquid helium pump used for forced flow of supercritical helium. Cryogenics 18:112–114

    Article  ADS  Google Scholar 

  51. Pengo R, Junker S, ten Kate HHJ (2010) Liquid helium centrifugal pump characteristics from 80 g/s to 1200 g/s. Cryogenics 50:8–10

    Article  ADS  Google Scholar 

  52. Kullmann D (1974) Siemens Research Labs, Superconducting generators and motors, VDI course notes Karlsruhe

    Google Scholar 

  53. Fair R, Stautner W (2011–2012) DE-EE0005143 report on superconductivity for large scale wind turbines. GE Global Research, NY, USA

    Book  Google Scholar 

  54. Lvovsky Y, Stautner W (2013) Topical review. Novel technologies and configurations of superconducting magnets for MRI. Superconductor Sci Technol 26:093001

    Google Scholar 

  55. Stautner W, Fair R, Sivasubramaniam K, Amm K, Bray J, Laskaris ET, Weeber K et al (2013) Large scale superconducting wind turbine cooling. IEEE Trans Appl Supercond 23:5200804

    Article  ADS  Google Scholar 

  56. Fair R, Stautner W et al (2012) ASC 2012 invited talk, Superconductivity for large-scale wind turbines, IEEE/CSC & ESAS European Superconductivity News Forum, no. 22. http://www.ewh.ieee.org/tc/csc/europe/newsforum/pdf/STP307.pdf

    Google Scholar 

  57. Snieckus D, Wind’s Super Cool Future discussion on the GE 10 MW superconducting generator design concept, including cryogenics, published in Recharge 05/13. http://www.rechargenews.com/wind/article1293593.ece

  58. W. Stautner W (2019) Cooling assembly for electrical machines and methods of assembling the same. Patent application Patent US 10,224,799 B2

    Google Scholar 

  59. Haran K, Kalsi S, Arndt T, Karmaker H, Badcock R, Buckley B, Haugan T, Izumi M, Loder D, Bray J, Masson P, Stautner W (2017) Topical Review, High power density superconducting rotating machines – development status and technology roadmap, Superconductor Science and Technology, vol. 30, no. 12. https://iopscience.iop.org/article/10.1088/1361-6668/aa833e

  60. Stautner W, Amm K, Xu M (2016) Review on superconducting technology of MRI scanners. Plenary talk 6, In: 26th International Cryogenic Engineering Conference, International Cryogenics Material Conference, New Delhi

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Stautner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stautner, W. (2020). Cryocoolers for Superconducting Generators. In: Atrey, M. (eds) Cryocoolers. International Cryogenics Monograph Series. Springer, Cham. https://doi.org/10.1007/978-3-030-11307-0_6

Download citation

Publish with us

Policies and ethics