Skip to main content

Orchid Biodiversity and Genetics

  • Living reference work entry
  • First Online:
Orchids Phytochemistry, Biology and Horticulture

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 45 Accesses

Abstract

The angiosperm family Orchidaceae comprises ~900 genera and 30,000–35,000 species, which are distributed all over the world. Besides, more than two lakhs man made hybrids are available. The unparalleled unique characteristic features and adaptations to thrive on almost all habitats on the earth made this group of plants as a distinct one from the rest of the plants in the Plant Kingdom. The diversity in morphology, physiology, and genetic peculiarities induces large level of speciation with remarkable evolutionary significance. The constructions of orchid flowers are always a curiosity to both layman and scientists. The unique flower characters (phenotype) such as wide variations in floral morphology, colors, shapes, enchanting smells to attract pollinators are the expression of genes (genotype). The construction of orchid flowers as well as the efficiency in successfully carrying out the function for which they are intended and underlying genetics is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Mondragon-Palomino M, Theissen G (2009) Why are orchid flowers so diverse? Reduction of evolutionary constraints by paralogues of class B floral homeotic genes. Ann Bot (Lond) 104:583–594

    Article  Google Scholar 

  2. Schiestl FP, Schluter PM (2009) Floral isolation, specialized pollination, and pollinator behavior in orchids. Annu Rev Entomol 54:425–446

    Article  CAS  PubMed  Google Scholar 

  3. Wang SL, Viswanath KK, Tong CG, An HR, Jang S, Chen FC (2019) Floral induction and flower development of orchids. Front Plant Sci 10:1258

    Article  PubMed  PubMed Central  Google Scholar 

  4. Blanchard MG, Runkle ES (2006) Temperature during the day, but not during the night, controls flowering of Phalaenopsis orchids. J Exp Bot 57(15):4043–4049

    Article  CAS  PubMed  Google Scholar 

  5. Campos KO, Kerbauy GB (2004) Thermoperiodic effect on flowering and endogenous hormonal status in Dendrobium (Orchidaceae). J Plant Physiol 161(12):1385–1387

    Article  CAS  PubMed  Google Scholar 

  6. Zhang Y, Zhao S, Liu D, Zhang Q, Cheng J (2014) Flowering phenology and reproductive characteristics of Cypripedium macranthos (Orchidaceae) in China and their implication in conservation. Pak J Bot 46(4):1303–1308

    Google Scholar 

  7. Wang WY, Chen WS, Huang KL, Huang L-S, Chen WH, Su WR (2003) The effects of day length on protein synthesis and flowering in Doritis pulcherrima. Sci Hortic 97:49–56

    Article  CAS  Google Scholar 

  8. Blanchard MG, Runkle ES (2008) Benzyladenine promotes flowering in Doritaenopsis and Phalaenopsis orchids. J Plant Growth Regul 27(2):141–150

    Article  CAS  Google Scholar 

  9. Wickland DP, Hanzawa Y (2015) The FLOWERING LOCUS T/TERMINAL FLOWER 1 gene family: functional evolution and molecular mechanisms. Mol Plant 8:983–997

    Article  CAS  PubMed  Google Scholar 

  10. Hanzawa Y, Money T, Bradley D (2005) A single amino acid converts a repressor to an activator of flowering. Proc Natl Acad Sci U S A 102:7748–7753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ahn JH, Miller D, Winter VJ, Banfield MJ, Lee JH, Yoo SY, Henz SR, Brady RL, Weigel D (2006) A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBOJ 25:605–614

    Article  CAS  Google Scholar 

  12. Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116–1120

    Article  CAS  PubMed  Google Scholar 

  13. Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH (2007) Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev 21:397–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kumar SV, Lucyshyn D, Jaeger KE, Alo’s E, Alvey E, Harberd NP, Wigge PA (2012) Transcription factor PIF4 controls the thermos-sensory activation of flowering. Nature 484:242–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Adrian J, Farrona S, Reimer JJ, Albani MC, Coupland G, Turck F (2010) Cis-regulatory elements and chromatin state coordinately control temporal and spatial expression of FLOWERING LOCUS T in Arabidopsis. Plant Cell 22:1425–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Searle I, He Y, Turck F, Vincent C, Fornara F, Krober S, Amasino RA, Coupland G (2006) The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev 20:898–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056

    Article  CAS  PubMed  Google Scholar 

  18. Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059

    Article  CAS  PubMed  Google Scholar 

  19. Amasino R (2010) Seasonal and developmental timing of flowering. Plant J 61:1001–1013

    Article  CAS  PubMed  Google Scholar 

  20. Simon R, Igeno MI, Coupland G (1996) Activation of floral meristem identity genes in Arabidopsis. Nature 384:59–62

    Article  CAS  PubMed  Google Scholar 

  21. Hanano S, Goto K (2011) Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. Plant Cell 23:3172–3184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jang S, Choi SC, Li HY, An G, Schmelzer E (2015) Functional characterization of Phalaenopsis aphrodite flowering genes PaFT1 and PaFD. PLoS One 10(8):e0134987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Li R, Wang A, Sun S, Liang S, Wang X, Ye Q et al (2012) Functional characterization of FT and MFT ortholog genes in orchid (Dendrobium nobile Lindl.) that regulate the vegetative to reproductive transition in Arabidopsis. Plant Cell Tissue Organ Cult 111(2):143–151

    Article  CAS  Google Scholar 

  24. Ding L, Wang Y, Yu H (2013) Overexpression of DOSOC1, an ortholog of Arabidopsis SOC1, promotes flowering in the orchid Dendrobium Chao Parya Smile. Plant Cell Physiol 54(4):595–608

    Article  CAS  PubMed  Google Scholar 

  25. Sawettalake N, Bunnag S, Wang Y, Shen L, Yu H (2017) DOAP1 promotes flowering in the orchid Dendrobium Chao Praya Smile. Front Plant Sci 8:400

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yu H, Yang SH, Goh CJ (2000) DOH1, a class 1 knox gene, is required for maintenance of the basic plant architecture and floral transition in orchid. Plant Cell 12(11):2143–2160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hou CJ, Yang CH (2009) Functional analysis of FT and TFL1 orthologs from orchid (Oncidium Gower Ramsey) that regulate the vegetative to reproductive transition. Plant Cell Physiol 50(8):1544–1557

    Article  CAS  PubMed  Google Scholar 

  28. Hsu HF, Huang CH, Chou LT, Yang CH (2003) Ectopic expression of an orchid (Oncidium Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant Cell Physiol 44(8):783–794

    Article  CAS  PubMed  Google Scholar 

  29. Chin DC, Hsieh CC, Lin HY, Yeh KW (2016) A low glutathione redox state couples with a decreased ascorbate redox ratio to accelerate flowering in Oncidium orchid. Plant Cell Physiol 57(2):423–436

    Article  CAS  PubMed  Google Scholar 

  30. Sun X, Qin Q, Zhang J, Zhang C, Zhou M, Paek KY et al (2012) Isolation and characterization of the FVE gene of a Doritaenopsis hybrid involved in the regulation of flowering. Plant Growth Regul 68(1):77–86

    Article  CAS  Google Scholar 

  31. Chen W, Qin Q, Zhang C, Zheng Y, Wang C, Zhou M et al (2015) DhEFL2, 3 and 4, the three EARLY FLOWERING4-like genes in a Doritaenopsis hybrid regulate floral transition. Plant Cell Rep 34(12):2027–2041

    Article  CAS  PubMed  Google Scholar 

  32. Li X, Luo J, Yan T, Xiang L, Jin F, Qin D et al (2013) Deep sequencing-based analysis of the Cymbidium ensifolium floral transcriptome. PLoS ONE 8(12):e85480. https://doi.org/10.1371/journal.pone.0085480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lin CS, Hsu CT, Liao DC, Chang WJ, Chou ML, Huang YT et al (2016) Transcriptome-wide analysis of the MADS-box gene family in the orchid Erycina pusilla. Plant Biotechnol J 14(1):284–298. https://doi.org/10.1111/pbi.12383

    Article  CAS  PubMed  Google Scholar 

  34. Aceto S, Gaudio L (2011) The MADS and the beauty: genes involved in the development of orchid flowers. Curr Genomics 12(5):342–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schwarz-Sommer Z, Huijser P, Nacken W, Saedler H, Sommer H (1990) Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250:931–936

    Article  CAS  PubMed  Google Scholar 

  36. Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    Article  CAS  PubMed  Google Scholar 

  37. Theißen G, Melzer R, Rümpler F (2016) MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development 143(18):3259–3271

    Article  PubMed  CAS  Google Scholar 

  38. Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA et al (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346:35–39

    Article  CAS  PubMed  Google Scholar 

  39. Ó’Maoiléidigh DS, Graciet E, Wellmer F (2014) Gene networks controlling Arabidopsis thaliana flower development. New Phytol 201:16–30

    Article  PubMed  Google Scholar 

  40. Irish VF (2010) The flowering of Arabidopsis flower development. Plant J 61:1014–1028

    Article  CAS  PubMed  Google Scholar 

  41. Angenent GC, Colombo L (1996) Molecular control of ovule development. Trends Plant Sci 1:228–232

    Article  Google Scholar 

  42. Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, Ditta G, Yanofsky MF, Kater MM, Colombo L (2003) MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell 15:2603–2611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, Wisman E, Yanofsky MF (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424:85–88

    Article  CAS  PubMed  Google Scholar 

  44. Theißen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85

    Article  PubMed  Google Scholar 

  45. Yu H, Goh C (2000) Differential gene expression during floral transition in an orchid hybrid Dendrobium Madame Thong-In. Plant Cell Rep 19:926–931

    Article  CAS  PubMed  Google Scholar 

  46. Yu H, Goh CJ (2002) Molecular genetics of reproductive biology in orchids. Plant Physiol 127:1390–1393

    Article  CAS  Google Scholar 

  47. Lu ZX, Wu M, Loh CS, Yeong CY, Goh CJ (1993) Nucleotide sequence of a flower-specific MADS box cDNA clone from orchid. Plant Mol Biol 23:901–904

    Article  CAS  PubMed  Google Scholar 

  48. Mondragon-Palomino M, Theissen G (2008) MADS about the evolution of orchid flowers. Trends Plant Sci 13:51–59

    Article  CAS  PubMed  Google Scholar 

  49. Mondragon-Palomino M, Theissen G (2011) Conserved differential expression of paralogous DEFICIENS- and GLOBOSA-like MADS-box genes in the flowers of Orchidaceae: refining the ‘orchid code’. Plant J 66:1008–1019

    Article  CAS  PubMed  Google Scholar 

  50. Yu H, Goh CJ (2000) Identification and characterization of three orchid MADS-box genes of the AP1/AGL9 subfamily during floral transition. Plant Physiol 123(4):1325–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nadeau JA, Zhang XS, Li J, O’Neill SD (1996) Ovule development: identification of stage-specific and tissue-specific cDNAs. Plant Cell 8:213–239

    CAS  PubMed  PubMed Central  Google Scholar 

  52. O’Neill SD, Nadeau JA, Zhang XS, Bui AQ, Halevy AH (1993) Interorgan regulation of ethylene biosynthetic genes by pollination. Plant Cell 5:419–432

    PubMed  PubMed Central  Google Scholar 

  53. Porat R, Halevy AH, Serek M, Borochov A (1995) An increase in ethylene sensitivity following pollination is the initial event triggering an increase in ethylene production and enhanced senescence of Phalaenopsis orchid flower. Physiol Plant 93:778–784

    Article  CAS  Google Scholar 

  54. Porat R, Borochov A, Halevy AH (1994) Pollination induced senescence in Phalaenopsis petals. Relationship of ethylene sensitivity to activity of GTP-binding proteins and protein phosphorylation. Physiol Plant 90:679–684

    Article  CAS  Google Scholar 

  55. Halevy AH, Porat R, Spiegelstein H, Borochov A, Botha L, Whitehead CS (1996) Short chain saturated fatty acid in the regulation of pollination-induced ethylene sensitivity of Phalaenopsis flowers. Physiol Plant 97:469–474

    Article  CAS  Google Scholar 

  56. Zhang XS, O’Neill SD (1993) Ovary and gametophyte development are coordinately regulated by auxin and ethylene following pollination. Plant Cell 5:403–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yu H, Goh CJ (2001) Molecular genetics of reproductive biology in orchids. Plant Physiol 127:1390–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Neelam SS, Jyoti SJ, Sandhya T, Bhawana M, Lokesh KN, Rajender SS (2018) Plant metabolic engineering. In: Barh D, Azevedo V (eds) Omics technologies and bio-engineering towards improving quality of life, volume 2: microbial, plant, environmental and industrial technologies, Academic, Elsevier, London, pp 143–175. https://doi.org/10.1016/B978-0-12-815870-8.00009-7

  59. Singer AC, Crowley DE, Thompson IP (2003) Secondary plant metabolites in phytoremediation and biotransformation. TRENDS Biotechnol 21(3):123–130

    Article  CAS  PubMed  Google Scholar 

  60. Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1:13–25

    Article  CAS  Google Scholar 

  61. Edreva A, Velikova V, Tsonev T et al (2008) Stress-protective role of secondary metabolites: diversity of functions and mechanisms. Gen Appl Plant Physiol 34(1–2):67–78

    CAS  Google Scholar 

  62. Isah T (2019) Stress and defense responses in plant secondary metabolites production. Biol Res 52:39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Xu S, Schlüter PM, Grossniklaus U, Schiestl FP (2012) The genetic basis of pollinator adaptation in a sexually deceptive orchid. PLoS Genet 8(8):e1002889. https://doi.org/10.1371/journal.pgen.1002889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mashilo J, Odindo AO, Shimelis HA, Musenge P, Tesfay SZ, Magwaza LS (2017) Drought tolerance of selected bottle gourd [Lagenaria siceraria (Molina) Standl.] landraces assessed by leaf gas exchange and photosynthetic efficiency. Plant Physiol Biochem 120:75–87

    Article  CAS  PubMed  Google Scholar 

  65. de Matos NJ, Bertodo LOO, Da Rosa LMG, Von Poser GL, Rech SB (2014) Stress induction of valuable secondary metabolites in Hypericum polyanthemum acclimatized plants. South Afr J Bot 94:182–189

    Article  CAS  Google Scholar 

  66. Niinemets Ü (2015) Uncovering the hidden facets of drought stress: secondary metabolites make the difference. Tree Physiol 36(2):129–132

    PubMed  Google Scholar 

  67. Quan NT, Anh LH, Khang DT et al (2016) Involvement of secondary metabolites in response to drought stress of rice (Oryza sativa L.). Agriculture 6(2):23

    Article  CAS  Google Scholar 

  68. Afzal SF, Yar AK, Ullah RH et al (2017) Impact of drought stress on active secondary metabolite production in Cichorium intybus roots. J Appl Environ Biol Sci 7(7):39–43

    Google Scholar 

  69. Piasecka A, Sawikowska A, Kuczyńska A et al (2017) Drought-related secondary metabolites of barley (Hordeum vulgare L.) leaves and their metabolomic quantitative trait loci. Plant J 89(5):898–913

    Article  CAS  PubMed  Google Scholar 

  70. Johnson M, Janakiraman N (2013) Phytochemical and TLC studies on stem and leaves of the orchid dendrobium panduratum subsp. villosum Gopalan & AN Henry. Indian J Nat Prod Resour 4:250–254

    Google Scholar 

  71. Banerjee J, Chauhan N, Dey BK (2018) Pharmacognostical, physiochemical and phytochemical evaluation of leaf, stem and root of orchid Dendrobium ochreatum. J Appl Pharma Res 6(1):16–25

    Article  CAS  Google Scholar 

  72. Minh TN, Khang DT, Tuyen PT, Minh LT, Anh LH, Quan NV, Ha PT, Quan NT, Toan NP, Elzaawely AA, Xuan TD (2016) Phenolic compounds and antioxidant activity of Phalaenopsis orchid hybrids. Antioxidants (Basel) 5(3):31. https://doi.org/10.3390/antiox5030031

    Article  CAS  Google Scholar 

  73. Minh TN, Tuyen PT, Khang DT, Quan NV, Ha PTT, Quan NT, Andriana Y, Xinyan F, Van TM, Khanh TD, Xuan TD (2017) Potential use of plant waste from the moth orchid (Phalaenopsis Sogo Yukidian “V3”) as an antioxidant source. Foods 27(6–10):85

    Article  CAS  Google Scholar 

  74. Sunita S, Suman K, Deepti G, Mayuresh J, Prasenjit P, Nasheman K (2015) Variation in the marker content of five different Dendrobium species: comparative evaluation using validated HPTLC technique. J App Pharm Sci 5(10):32–38

    Google Scholar 

  75. Lam Y, Tzi Bun NG, Yao RM, Shi J, Xu K, Sze SCW, Zhang KY (2015) Evaluation of chemical constituents and important mechanism of pharmacological biology in Dendrobium plants. Evid Based Complement Alternat Med. https://doi.org/10.1155/2015/841752. Accessed 10 July 2021

  76. Williams (1979) The leaf flavonoids of the Orchidaceae. Phytochemistry 18(5):803–813

    Article  CAS  Google Scholar 

  77. Li BJ, Zheng BQ, Wang JY, Tsai WC, Lu HC, Zou LH et al (2020) New insight into the molecular mechanism of colour differentiation among floral segments in orchids. Commun Biol 3(89):1–13. https://doi.org/10.1038/s42003-020-0821-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Brockington SF, Walker RH, Glover BJ, Soltis PS, Soltis DE (2011) Complex pigment evolution in the Caryophyllales. New Phytol 190(4):854–864

    Article  CAS  PubMed  Google Scholar 

  79. Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5(e47):1–15. https://doi.org/10.1017/jns.2016.41

    Article  CAS  Google Scholar 

  80. Zhao D, Tao J (2015) Recent advances on the development and regulation of flower color in ornamental plants. Front Plant Sci 6:261. https://doi.org/10.3389/fpls.2015.00261

    Article  PubMed  PubMed Central  Google Scholar 

  81. Martin C, Gerats T (1993) Control of flower coloration. In: Jordan BR (ed) The molecular biology of flowering. CAB International, Wallingford

    Google Scholar 

  82. Glover BJ (2011) The diversity of flower color: how and why?. WIT Transactions on State of the Art in Science and Engineering, WI T Press

    Google Scholar 

  83. Tan SH, Manap SA, Karim MR, Rashid SS, Mahmood M, Ling Ma N (2014) Comparative flower pigment study of orchid plants. Adv Environ Biol 8(20):20–24

    Google Scholar 

  84. Vagas FD, Jimenez AR, Paredes-Lopez O (2000) Natural pigments: carotenoids, anthocyanins and betalains-characteristics, biosynthesis, processing and stability. Crit Rev Food Sci 40:173–289

    Article  Google Scholar 

  85. Matsui S, Nakamura M (1988) Distribution of flower pigments in perianth of Cattleya and genera I. species. J Japan Soc Hort Sci 57(2):222–232

    Article  Google Scholar 

  86. Honda K, Ômura H, Hori M, Kainoh Y (2010) Allelochemicals in plant-insect interactions. In: Comprehensive natural products II: chemistry and biology, vol 4. Elsevier Ltd, Boston, pp 563–594

    Chapter  Google Scholar 

  87. Liew CF, LOH CS, Goh CJ, Lim SH (1998) The isolation, molecular characterization and expression of dihydroflavonol 4-reductase cDNA in the orchid, Bromheadia finlaysoniana. Plant Sci 135(2):161–169

    Article  CAS  Google Scholar 

  88. Johnson ET, Yi H, Shin B, Oh BJ, Cheong H, Choi G (1999) Cymbidium hybrida dihydroflavonol 4-reductase does not efficiently reduce dihydrokaempferol to produce orange pelargonidin-type anthocyanins. Plant J 19(10):81–85

    Google Scholar 

  89. Wang LM, Zhang J, Dong XY, Fu ZZ, Jiang H, Zhang HC (2018) Identification and functional analysis of anthocyanin biosynthesis genes in Phalaenopsis hybrids. Biol Plant 62(1):45–54

    Article  CAS  Google Scholar 

  90. Li Y, Liu X, Cai X, Shan X, Gao R, Yang S, Han T, Wang S, Wang L, Gao X (2017) Dihydroflavonol 4-reductase genes from Freesia hybrida play important and partially overlapping roles in the biosynthesis of flavonoids. Front Plant Sci 8:428. https://doi.org/10.3389/fpls.2017.00428

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hieber AD, Mudalige-Jayawickrama RG, Kuehnle AR (2006) Color genes in the orchid Oncidium Gower Ramsey: identification, expression and potential genetic instability in an interspecific cross. Planta 223:521–531

    Article  CAS  PubMed  Google Scholar 

  92. Mudalige-Jayawickrama RG, Champagne MM, Hieber AD, Kuehnle AR (2005) Cloning and characterization of two anthocyanin biosynthetic genes from Dendrobium orchid. J Am Soc Hortic Sci 130:611–618

    Article  CAS  Google Scholar 

  93. Pitakdantham W, Sutabutra T, Chiemsombat P, Pitaksutheepong C (2011) Isolation and characterization of dihydroflavonol 4-reductase gene in Dendrobium flowers. J Plant Sci 6:88–94

    Article  CAS  Google Scholar 

  94. Anggraini R, Febriani AL, Mazieda MN, Al-Yamini TH, Listyorini DD (2017) Isolation of dihydroflavonol-4-reductase (DFR) gene in Dendrobium helix cv. Pomeo Brown. KNE Life Sci 3(4):213–218. https://doi.org/10.18502/kls.v3i4.707

    Article  Google Scholar 

  95. Whang SS, Um WS, Song IJ, Lim PO, Choi K, Park KW, Kang KW, Choi MS, Koo JC (2011) Molecular analysis of anthocyanin biosynthetic genes and control of flower coloration by flavonoid 3′,5′-hydroxylase (F3′5′H) in Dendrobium moniliforme. J Plant Biol 54:209–218

    Article  CAS  Google Scholar 

  96. Khumkarjorn N, Thanonkeo S, Yamada M, Thanonkeo P (2017) Cloning and expression analysis of a flavanone 3-hydroxylase gene in Ascocenda orchid. J Plant Biochem Biotechnol 26(2):179–190

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

G, S., S, S. (2021). Orchid Biodiversity and Genetics. In: Merillon, JM., Kodja, H. (eds) Orchids Phytochemistry, Biology and Horticulture. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-11257-8_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11257-8_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11257-8

  • Online ISBN: 978-3-030-11257-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics