Skip to main content

Accumulation of Secondary Metabolites and Improved Size of Glandular Trichomes in Artemisia annua

  • Living reference work entry
  • First Online:
Plant Cell and Tissue Differentiation and Secondary Metabolites

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Glandular trichomes are multicellular epidermal outgrowths that have characteristic globular head made up of secretory cells and store large quantities of specialized secondary metabolites. Artemisia annua is known for its medicinally important secondary metabolite “artemisinin” which is synthesized and stored in glandular trichomes. However, our understanding of morphological and transcriptional control related to glandular trichome development and accumulation of secondary metabolites in A. annua is available in scattered form. This chapter deals with the trichome biology including developmental and functional aspects along with their correlation with secondary metabolite accumulation in response to various biotic and abiotic signals of the environment using A. annua as model. This chapter also emphasizes the molecular mechanisms behind trichome development in A. annua and provides a glimpse of molecular players involved in this process. There are many environmental as well as intrinsic factors which directly or indirectly affect secondary metabolite synthesis and as a result determine the size of glandular trichomes. The compiled information available for A. annua trichome biology can further be utilized for exploring trichome engineering in many medicinal or aromatic plants which are less explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Aftab T, Khan MM, Idrees M, Naeem M, Moinuddin, Hashmi N (2011) Methyl jasmonate counteracts boron toxicity by preventing oxidative stress and regulating antioxidant enzyme activities and artemisinin biosynthesis in Artemisia annua L. Protoplasma 248(3):601–612. https://doi.org/10.1007/s00709-010-0218-5

    Article  CAS  PubMed  Google Scholar 

  2. Arsenault PR, Vail D, Wobbe KK, Erickson K, Weathers PJ (2010) Reproductive development modulates gene expression and metabolite levels with possible feedback inhibition of artemisinin in Artemisia annua L. Plant Physiol 154:958–968

    Article  CAS  Google Scholar 

  3. Ascensão L, Pais MSS (1987) Glandular trichomes of Artemisia campestris (ssp. maritima): ontogeny and histochemistry of the secretory product. Bot Gaz 148:221–227

    Article  Google Scholar 

  4. Bilkova I, Kjaer A, van der Kooy F, Lommen WJM (2016) Effects of N fertilization on trichome density, leaf size and artemisinin production in Artemisia annua leaves. Acta Hortic 1125:369–376. https://doi.org/10.17660/ActaHortic.2016.1125.48

    Article  Google Scholar 

  5. Chen M, Yan T, Shen Q, Lu X et al (2017) GLANDULAR TRICHOME-SPECIFIC WRKY 1 promotes artemisinin biosynthesis in Artemisia annua. New Phytol 214:304–316

    Article  CAS  Google Scholar 

  6. Daddy NB, Kalisya LM, Bagire PG, Watt RL, Towler MJ, Weathers PJ (2017) Artemisia annua dried leaf tablets treated malaria resistant to ACT and i.v. artesunate: case reports. Phytomedicine 32:37–40. https://doi.org/10.1016/j.phymed.2017.04.006

    Article  PubMed  PubMed Central  Google Scholar 

  7. Duke SO, Paul RN (1993) Development and fine structure of the glandular trichomes of Artemisia annua L. Int J Plant Sci 154:107–118

    Article  Google Scholar 

  8. Duke MV, Paul RN, Elsohly HN et al (1994) Localization of artemisinin and artemisitene in foliar tissues of glanded and glandless biotypes of Artemisia annua L. Int J Plant Sci 155:365–372

    Article  Google Scholar 

  9. Elfawal MA, Towler MJ, Reich NG, Weathers PJ, Rich SM (2015) Dried whole-plant Artemisia annua slows evolution of malaria drug resistance and overcomes resistance to artemisinin. Proc Natl Acad Sci U S A 112(3):821–826. https://doi.org/10.1073/pnas.1413127112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ferreira JF (2007) Nutrient deficiency in the production of artemisinin, dihydroartemisinic acid, and artemisinic acid in Artemisia annua L. J Agric Food Chem 55(5):1686–1694

    Article  CAS  Google Scholar 

  11. Glas JJ, Schimmel BCJ, Alba JM et al (2012) Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. Int J Mol Sci 13:17077–17103

    Article  CAS  Google Scholar 

  12. Hao X, Zhong Y, Nützmann HW, Fu X, Yan T, Shen Q, Chen M, Ma Y, Zhao J, Osbourn A, Li L, Tang K (2019) Light-induced artemisinin biosynthesis is regulated by the bZIP transcription factor AaHY5 in Artemisia annua. Plant Cell Physiol. (In-press). https://doi.org/10.1093/pcp/pcz084

    Article  Google Scholar 

  13. Huchelmann A, Boutry M, Hachez C (2017) Plant glandular trichomes: natural cell factories of high biotechnological interest. Plant Physiol 175(1):6–22. https://doi.org/10.1104/pp.17.00727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jeremic D, Jokic A, Behbud A, Stefanovic M (1973) New type of sesquiterpene lactones isolated from Artemisia annua L. arteannuin B. Tetrahedron Lett 14:3039–3042

    Article  Google Scholar 

  15. Ji Y, Xiao J, Shen Y, Ma D, Li Z, Pu G, Li X, Huang L, Liu B, Ye H, Wang H (2014) Cloning and characterization of AabHLH1, a bHLH transcription factor that positively regulates artemisinin biosynthesis in Artemisia annua. Plant Cell Physiol 55(9):1592–1604

    Article  CAS  Google Scholar 

  16. Jiang W, Fu X, Pan Q, Tang Y, Shen Q, Lv Z, Yan T, Shi P, Li L, Zhang L, Wang G, Sun X, Tang K (2016) Overexpression of AaWRKY1 leads to an enhanced content of artemisinin in Artemisia annua. Biomed Res Int 2016:7314971

    PubMed  PubMed Central  Google Scholar 

  17. Judd R, Bagley MC, Li M, Zhu Y, Lei C, Yuzuak S, Ekelöf M, Pu G, Zhao X, Muddiman DC, Xie D-Y (2019) Artemisinin biosynthesis in non-glandular trichome cells of Artemisia annua. Mol Plant 12:704–714

    Article  CAS  Google Scholar 

  18. Kapoor R, Chaudhary V, Bhatnagar AK (2007) Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza 17:581–587

    Article  CAS  Google Scholar 

  19. Kumari A, Pandey N, Pandey-Rai S (2018) Exogenous salicylic acid-mediated modulation of arsenic stress tolerance with enhanced accumulation of secondary metabolites and improved size of glandular trichomes in Artemisia annua L. Protoplasma 255(1):139–152. https://doi.org/10.1007/s00709-017-1136-6

    Article  CAS  PubMed  Google Scholar 

  20. Li L, Hao X, Liu H, Wang W, Fu X, Ma Y, Shen Q, Chen M, Tang K (2019) Jasmonic acid-responsive AabHLH1 positively regulates artemisinin biosynthesis in Artemisia annua. Biotechnol Appl Biochem. (In-press). https://doi.org/10.1002/bab.1733

    Article  CAS  Google Scholar 

  21. Liersch R, Soicke H, Stehr C, Tullner HU (1986) Formation of artemisinin in Artemisia annua during one vegetation period. Planta Med 52:387–390

    Article  Google Scholar 

  22. Liu S, Tian N, Li J et al (2009) Isolation and identification of novel genes involved in artemisinin production from flowers of Artemisia annua using suppression subtractive hybridization and metabolite analysis. Planta Med 75:1542–1547

    Article  CAS  Google Scholar 

  23. Lommen WJM, Schenk E, Bouwmeester HJ, Verstappen FWA (2006) Trichome dynamics and artemisinin accumulation during development and senescence of leaves of Artemisia annua leaves. Planta Med 72:336–345

    Article  CAS  Google Scholar 

  24. Lu X, Zhang L, Zhang F, Jiang W, Shen Q, Zhang L, Lv Z, Wang G, Tang K (2013) AaORA, a trichome-specific AP2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea. New Phytol 198(4):1191–1202

    Article  CAS  Google Scholar 

  25. Ma YN, Xu DB, Li L, Zhang F, Fu XQ, Shen Q, Lyu XY, Wu ZK, Pan QF, Shi P, Hao XL, Yan TX, Chen MH, Liu P, He Q, Xie LH, Zhong YJ, Tang YL, Zhao JY, Zhang LD, Sun XF, Tang KX (2018) Jasmonate promotes artemisinin biosynthesis by activating the TCP14-ORA complex in Artemisia annua. Sci Adv 4(11):eaas9357. https://doi.org/10.1126/sciadv.aas9357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maes L, Inze D, Goossens A (2008) Functional specialization of the transparent testa GLABRA1network allows differential hormonal control of laminal and marginal trichome initiation in Arabidopsis rosette leaves. Plant Physiol 148:1453–1564

    Article  CAS  Google Scholar 

  27. Maes L, Van Nieuwerburgh FCW, Zhang Y, Reed DW, Pollier J, Vande Casteele SRF, Inzé D, Covello PS, Deforce DLD, Goossens A (2011) Dissection of the phytohormonal regulation of trichome formation and biosynthesis of the antimalarial compound artemisinin in Artemisia annua plants. New Phytol 189(1):176–189

    Article  Google Scholar 

  28. Mannan A, Ahmed I, Arshad W, Hussain I, Mirza B (2011) Effects of vegetative and flowering stages on the biosynthesis of artemisinin in Artemisia species. Arch Pharm Res 34(10):1657–1661

    Article  CAS  Google Scholar 

  29. Matias-Hernandez L, Jiang W, Yang K, Tang K, Brodelius PE, Pelaz S (2017) AaMYB1 and its orthologue AtMYB61 affect terpene metabolism and trichome development in Artemisia annua and Arabidopsis thaliana. Plant J 90:520–534

    Article  CAS  Google Scholar 

  30. Olofsson L, Lundgren A, Brodelius PE (2012) Trichome isolation with and without fixation using laser microdissection and pressure catapulting followed by RNA amplification: expression of genes of terpene metabolism in apical and sub-apical trichome cells of Artemisia annua L. Plant Sci 183:9–13

    Article  CAS  Google Scholar 

  31. Olsson ME, Olofsson LM, Lindahl AL, Lundgren A, Brodelius M, Brodelius PE (2009) Localization of enzymes of artemisinin biosynthesis to the apical cells of glandular secretory trichomes of Artemisia annua L. Phytochemistry 70:1123–1128

    Article  CAS  Google Scholar 

  32. Paddon CJ, Keasling JD (2014) Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol 12(5):355–367. https://doi.org/10.1038/nrmicro3240

    Article  CAS  PubMed  Google Scholar 

  33. Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A et al (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496(7446):528–532. https://doi.org/10.1038/nature12051

    Article  CAS  PubMed  Google Scholar 

  34. Pérez-Quintero AL, Sablok G, Tatiana VT et al (2012) Mining of miRNAs and potential targets from gene oriented clusters of transcripts sequences of the anti-malarial plant, Artemisia annua. Biotechnol Lett 34:737–745

    Article  Google Scholar 

  35. Pandey N, Pandey-Rai S (2015) Deciphering UV-B induced variation in DNA methylation pattern and its influence on regulation of DBR2 expression in Artemisia annua L. Planta 242(4):869–879

    Article  CAS  Google Scholar 

  36. Pu GB, Ma DM, Chen JL, Ma LQ, Wang H, Li GF, Ye HC, Liu BY (2009) Salicylic acid activates artemisinin biosynthesis in Artemisia annua L. Plant Cell Rep 28(7):1127–1135

    Article  CAS  Google Scholar 

  37. Rai R, Pandey S, Rai SP (2011) Arsenic-induced changes in morphological, physiological, and biochemical attributes and artemisinin biosynthesis in Artemisia annua, an antimalarial plant. Ecotoxicology 20(8):1900–1913. https://doi.org/10.1007/s10646-011-0728-8

    Article  CAS  PubMed  Google Scholar 

  38. Rostkowska C, Mota CM, Oliveira TC, Santiago FM, Oliveira LA, Korndörfer GH, Lana RM, Rossi ML, Nogueira NL, Simonnet X, Mineo TW, Silva DA, Mineo JR (2016) Si-accumulation in Artemisia annua glandular trichomes increases artemisinin concentration, but does not interfere in the impairment of Toxoplasma gondii growth. Front Plant Sci 7:1430

    Article  Google Scholar 

  39. Schilmiller AL, Last RL, Pichersky E (2008) Harnessing plant trichome biochemistry for the production of useful compounds. Plant J 54:702–711

    Article  CAS  Google Scholar 

  40. Schramek N, Wang HH, Römisch-Margl W, Keil B, Radykewicz T, Winzenhörlein B et al (2009) Artemisinin biosynthesis in growing plants of Artemisia annua, a CO study. Phytochemistry 71:179–187

    Article  Google Scholar 

  41. Shi P, Fu X, Shen Q, Lui M et al (2018) The roles of AaMIXTA1 in regulating the initiation of glandular trichomes and cuticle biosynthesis in Artemisia annua. New Phytol 217:261–276. https://doi.org/10.1111/nph.14789

    Article  Google Scholar 

  42. Tan H, Xiao L, Gao S, Li Q, Chen J, Xiao Y, Ji Q, Chen R, Chen W, Zhang L (2015) TRICHOME AND ARTEMISININ REGULATOR 1 is required for trichome development and artemisinin biosynthesis in Artemisia annua. Mol Plant 8(9):1396–1411

    Article  CAS  Google Scholar 

  43. Tang Y, Li L, Yan T, Fu X, Shi P, Shen Q, Sun X, Tang K (2018) AaEIN3 mediates the downregulation of artemisinin biosynthesis by ethylene signaling through promoting leaf senescence in Artemisia annua. Front Plant Sci 9:413

    Article  Google Scholar 

  44. Tellez MR, Canel C, Rimando AM, Duke SO (1999) Differential accumulation of isoprenoids in glanded and glandless Artemisia annua L. Phytochemistry 52:1035–1040

    Article  CAS  Google Scholar 

  45. Tissier A (2012) Glandular trichomes: what comes after expressed sequence tags? Plant J 70:51–68

    Article  CAS  Google Scholar 

  46. Tu YY (1985) The constituents of young Artemisia annua. Zhong Yao Tong Bao 10(9):35–36, 18

    CAS  PubMed  Google Scholar 

  47. Wang W, Wang YJ, Zhang Q, Qi Y, Guo DJ (2009) Global characterization of Artemisia annua glandular trichome transcriptome using 454 pyrosequencing. BMC Genomics 10:1471–2161

    Google Scholar 

  48. WHO (2018) World Malaria report. https://www.who.int/malaria/publications/world-malaria-report-2018/en/

  49. Wu T, Wang Y, Guo D (2012) Investigation of glandular trichome proteins in Artemisia annua L. using comparative proteomics. PLoS One 7(8):e41822. https://doi.org/10.1371/journal.pone.0041822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xiao L, Tan H, Zhang L (2016) Artemisia annua glandular secretory trichomes: the biofactory of antimalarial agent artemisinin. Sci Bull 61(1):26–36

    Article  CAS  Google Scholar 

  51. Yan T, Li L, Xie L, Chen M, Shen Q, Pan Q, Fu X, Shi P, Tang Y, Huang H, Huang Y, Huang Y, Tang K (2018) A novel HD-ZIP IV/MIXTA complex promotes glandular trichome initiation and cuticle development in Artemisia annua. New Phytol 218(2):567–578. https://doi.org/10.1111/nph.15005

    Article  CAS  PubMed  Google Scholar 

  52. Yu N, Cai W-J, Wang S et al (2010) Temporal control of trichome distribution by MicroRNA156-targeted SPL genes in Arabidopsis thaliana. Plant Cell 22:2322–2335

    Article  CAS  Google Scholar 

  53. Zhong Y, Li L, Hao X, Fu X, Ma Y, Xie L, Shen Q, Kayani S, Pan Q, Sun X, Tang K (2018) AaABF3, an abscisic acid-responsive transcription factor, positively regulates artemisinin biosynthesis in Artemisia annua. Front Plant Sci 9:1777. https://doi.org/10.3389/fpls.2018.01777

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zhou Y, Tang N, Huang L, Zhao Y, Tang X, Wang K (2012) Effects of salt stress on plant growth, antioxidant capacity, glandular trichome density and volatile exudates of Schizonepeta tenuifolia Briq. PLoS One 7(8):e41822. https://doi.org/10.1371/journal.pone.0041822

    Article  CAS  Google Scholar 

  55. Ferreira JFS, Janick J (1996) Roots as an enhancing factor for the production of artemisinin in shoot cultures of Artemisia annua. Plant Cell, Tissue and Organ Culture 44 (3):211-217

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashi Pandey-Rai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pandey, N., Tiwari, A., Rai, S.K., Pandey-Rai, S. (2020). Accumulation of Secondary Metabolites and Improved Size of Glandular Trichomes in Artemisia annua. In: Ramawat, K., Ekiert, H., Goyal, S. (eds) Plant Cell and Tissue Differentiation and Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-11253-0_31-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11253-0_31-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11253-0

  • Online ISBN: 978-3-030-11253-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics