Skip to main content

Second Life of Polymeric-Based Materials: Strategies and Performance

  • Living reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

Wastes from polymeric materials could be considered as resources to manufacture new products by recycling. The properties of the as-obtained materials should be comparable to those of the virgin fossil-based plastics and also biopolymers. Several strategies are useful to achieve the required properties in order to introduce the recycled products into the market having competitive performance. Scientific knowledge related to different aspects of polymeric materials is a relevant tool to assure the performance of recycled products for new applications. Diverse strategies, able to upgrade the morphology and the properties of recycled materials, have been used in order to reach the desired quality/performance in those new applications. The aim of this chapter is to review the current developments in the recycling of plastics, giving ideas on how producing materials with desired quality from wastes contributes to a more sustainable management of energy and resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Sabău E (2018) Recycling of polymeric composite materials. In: Udroiu R (ed) Product lifecycle management – terminology and applications. Intech Open, London, UK, pp 103–121

    Google Scholar 

  2. Mativenga PT, Sultan AAM, Agwa-Ejon J, Mbohwa C (2017) Composites in a circular economy: a study of United Kingdom and South Africa. Proc CIRP 61:691–696. https://doi.org/10.1016/j.procir.2016.11.270

    Article  Google Scholar 

  3. Pickering SJ (2006) Recycling technologies for thermoset composite materials-current status. Compos Part A Appl Sci Manuf 37:1206–1215. https://doi.org/10.1016/j.compositesa.2005.05.030

    Article  CAS  Google Scholar 

  4. Yang Y, Boom R, Irion B, Heerden D-J, Kuiper P, Wit H (2012) Recycling of composite materials. Chem Eng Process Process Intensif 51:53–68. https://doi.org/10.1016/j.cep.2011.09.007

    Article  CAS  Google Scholar 

  5. Bhadra J, Al-Thani N, Abdulkareem A (2017) Chapter 11 - Recycling of polymer-polymer composites. In: Micro and Nano Fibrillar Composites (MFCs and NFCs) from Polymer Blends. Woodhead Publishing Elsevier, Cambridge, UK, pp 263-277

    Google Scholar 

  6. Palmer J, Ghita OR, Savage L, Evans KE (2009) Composites: Part A Successful closed-loop recycling of thermoset composites. Compos Part A 40:490–498. https://doi.org/10.1016/j.compositesa.2009.02.002

    Article  CAS  Google Scholar 

  7. Francis R (2017) Recycling of polymers: Methods, Characterization and Applications. John Wiley & Sons, Inc., USA, New Jersey.

    Google Scholar 

  8. Pietroluongo M, Padovano E, Frache A, Badini C (2019, in press) Mechanical recycling of an end-of-life automotive composite component. Sustain Mater Technol. https://doi.org/10.1016/j.molliq.2019.111554

  9. Gharde S, Kandasubramanian B (2019) Mechanothermal and chemical recycling methodologies for the Fibre Reinforced Plastic (FRP). Environ Technol Innov 14:100311. https://doi.org/10.1016/j.eti.2019.01.005

    Article  Google Scholar 

  10. Lievana Emiliano Julían (2005) Recycling of ground tyre rubber and polyolefin wastes by producing thermoplastic elastomers, PhD Thesys, Department of Mechanical and Process Engineering, University of Kaiserslautern. https://pdfs.semanticscholar.org/fa8b/ea94eb5c44c1ab8a74d40ffed599f2b74f30.pdf?_ga=2.44078372.1659384576.1589506307-1747334090.1589506307

  11. Durin A, De Micheli P, Ville J, Inceoglu F, Valette R, Vergnes B (2013) A matricial approach of fibre breakage in twin-screw extrusion of glass fibres reinforced thermoplastics. Compos Part A Appl Sci Manuf 48:47–56. https://doi.org/10.1016/J.COMPOSITESA.2012.12.011

    Article  CAS  Google Scholar 

  12. Feih S, Boiocchi E, Mathys G, Mathys Z, Gibson AG, Mouritz AP (2011) Composites: Part B Mechanical properties of thermally-treated and recycled glass fibres. Compos Part B 42:350–358. https://doi.org/10.1016/j.compositesb.2010.12.020

    Article  CAS  Google Scholar 

  13. Morin C, Loppinet-Serani A, Cansell F, Aymonier C (2012) Near- and supercritical solvolysis of carbon fibre reinforced polymers (CFRPs) for recycling carbon fibers as a valuable resource: state of the art. J Supercrit Fluids 66:232–240. https://doi.org/10.1016/j.supflu.2012.02.001

    Article  CAS  Google Scholar 

  14. Karuppannan S, Timo G (2020) A review on the recycling of waste carbon fibre/glass fibre – reinforced composites: fibre recovery, properties and life – cycle analysis. SN Appl Sci. https://doi.org/10.1007/s42452-020-2195-4

  15. Grigore ME (2017) Methods of recycling, properties and applications of recycled thermoplastic polymers. Recycling 2:1–11. https://doi.org/10.3390/recycling2040024

    Article  Google Scholar 

  16. Hopewell J, Dvorak R, Kosior E (2009) Plastics recycling: challenges and opportunities. Philos Trans R Soc B Biol Sci 364:2115–2126. https://doi.org/10.1098/rstb.2008.0311

    Article  CAS  Google Scholar 

  17. Kaminsky W (2010) Fluidized bed pyrolysis of waste polymer composites for oil and gas recovery. In: Management, recycling and reuse of waste composites. Woodhead Publishing Elsevier, Cambridge, UK, pp 192–213

    Google Scholar 

  18. Pickering SJ (2010) Thermal methods for recycling waste composites. In: Management, recycling and reuse of waste composites. Woodhead Publishing Elsevier, Cambridge, UK, pp 65–101

    Google Scholar 

  19. Meyer LO, Schulte K (2009) CFRP-recycling following a pyrolysis. https://doi.org/10.1177/0021998308097737

  20. Onwudili JA, Insura N, Williams PT (2016) Autoclave pyrolysis of carbon reinforced composite plastic waste for carbon fibre and chemicals recovery. 9671. https://doi.org/10.1179/1743967113Z.00000000066

  21. Onwudili JA, Miskolczi N, Nagy JT, Lipóczi G (2016) Recovery of glass fibre and carbon fibres from reinforced thermosets by batch pyrolysis and investigation of fibre re-using as reinforcement in LDPE matrix. Compos Part B. https://doi.org/10.1016/j.compositesb.2016.01.055

  22. Oliveux G, Dandy LO, Leeke G (2015) Current status of recycling of fibre reinforced polymers: review of technologies, reuse and resulting properties. Prog Mater Sci 72:61–99. https://doi.org/10.1016/j.pmatsci.2015.01.004

    Article  CAS  Google Scholar 

  23. http://www.elgcf.com/ELGCarbonFibre

  24. http://www.siemens.com/innovation/en/news/2013/e_inno_1316_1.htmSiemens

  25. http://www.adherent-tech.com/recycling_technologies

  26. http://www.innoveox.com/

  27. Cunliffe A, Williams P (2003) Characterisation of products from the recycling of glass fibre reinforced polyester waste by pyrolysis☆. Fuel 82:2223–2230. https://doi.org/10.1016/S0016-2361(03)00129-7

    Article  CAS  Google Scholar 

  28. Pimenta S, Pinho S (2010) Recycling carbon fibre reinforced polymers for structural applications: technology review and market outlook. Waste Manag 31:378–392. https://doi.org/10.1016/j.wasman.2010.09.019

    Article  CAS  Google Scholar 

  29. Hedlund-Åström A (2005) Model for end of life treatment of polymer composite materials. KTH, Stockholm

    Google Scholar 

  30. Longana ML, Ong N, Yu H, Potter KD (2016) Multiple closed loop recycling of carbon fibre composites with the HiPerDiF (High Performance Discontinuous Fibre) method. Compos Struct 153:271–277. https://doi.org/10.1016/j.compstruct.2016.06.018

    Article  Google Scholar 

  31. Yu H, Potter KD, Wisnom MR (2014) A novel manufacturing method for aligned discontinuous fibre composites (High Performance-Discontinuous Fibre method). Compos Part A Appl Sci Manuf 65:175–185. https://doi.org/10.1016/j.compositesa.2014.06.005

    Article  CAS  Google Scholar 

  32. Jensen JP, Skelton K (2018) Wind turbine blade recycling: experiences, challenges and possibilities in a circular economy. Renew Sust Energ Rev 97:165–176. https://doi.org/10.1016/j.rser.2018.08.041

    Article  Google Scholar 

  33. Jiang J, Deng G, Chen X, Gao X, Guo Q, Xu C, Zhou L (2017) On the successful chemical recycling of carbon fiber/epoxy resin composites under the mild condition. Compos Sci Technol 151:243–251. https://doi.org/10.1016/j.compscitech.2017.08.007

    Article  CAS  Google Scholar 

  34. Yuan Y, Sun Y, Yan S, Zhao J, Liu S, Zhang M, Zheng X, Jia L (2017) Multiply fully recyclable carbon fibre reinforced heat-resistant covalent thermosetting advanced composites. Nat Commun 8:14657. https://doi.org/10.1038/ncomms14657

    Article  Google Scholar 

  35. Yu K, Shi Q, Dunn ML, Wang T, Qi HJ (2016) Carbon fiber reinforced thermoset composite with near 100% recyclability. Adv Funct Mater 26:6098–6106. https://doi.org/10.1002/adfm.201602056

    Article  CAS  Google Scholar 

  36. Mathijsen D (2016) Thermoplastic composites keep gaining momentum in the automotive industry. Reinf Plast 60:408–412. https://doi.org/10.1016/j.repl.2015.06.095

    Article  Google Scholar 

  37. Wollan E (2017) Glass & carbon fiber reinforcement combine in hybrid long fiber thermoplastic composites to bridge price & performance gap. Reinf Plast 61:55–57. https://doi.org/10.1016/j.repl.2015.09.007

    Article  Google Scholar 

  38. Pietroluongo M, Padovano E, Frache A, Badini C (2020) Mechanical recycling of an end-of-life automotive composite component. Sustain Mater Technol 23:e00143. https://doi.org/10.1016/j.susmat.2019.e00143

    Article  CAS  Google Scholar 

  39. Inoue A, Morita K, Tanaka T, Arao Y, Sawada Y (2013) Effect of screw design on fiber breakage and dispersion in injection-molded long glass-fiber-reinforced polypropylene. J Compos Mater 49:75–84. https://doi.org/10.1177/0021998313514872

    Article  Google Scholar 

  40. Colucci G, Simon H, Roncato D, Martorana B, Badini C (2015) Effect of recycling on polypropylene composites reinforced with glass fibres. J Thermoplast Compos Mater 30:707–723. https://doi.org/10.1177/0892705715610407

    Article  CAS  Google Scholar 

  41. Tapper RJ, Longana ML, Yu H, Hamerton I, Potter KD (2018) Development of a closed-loop recycling process for discontinuous carbon fibre polypropylene composites. Compos Part B Eng 146:222–231. https://doi.org/10.1016/j.compositesb.2018.03.048

    Article  CAS  Google Scholar 

  42. Garate J, Solovitz SA, Kim D (2018) Fabrication and performance of segmented thermoplastic composite wind turbine blades. Int J Precis Eng Manuf Technol 5:271–277. https://doi.org/10.1007/s40684-018-0028-3

    Article  Google Scholar 

  43. Murray RE, Roadman J, Beach R (2019) Fusion joining of thermoplastic composite wind turbine blades: lap-shear bond characterization. Renew Energy 140:501–512. https://doi.org/10.1016/j.renene.2019.03.085

    Article  Google Scholar 

  44. Murray RE, Jenne S, Snowberg D, Berry D, Cousins D (2019) Techno-economic analysis of a megawatt-scale thermoplastic resin wind turbine blade. Renew Energy 131:111–119. https://doi.org/10.1016/j.renene.2018.07.032

    Article  Google Scholar 

  45. Cousins DS, Suzuki Y, Murray RE, Samaniuk JR, Stebner AP (2019) Recycling glass fiber thermoplastic composites from wind turbine blades. J Clean Prod 209:1252–1263. https://doi.org/10.1016/j.jclepro.2018.10.286

    Article  CAS  Google Scholar 

  46. Vijay N, Rajkumara V, Bhattacharjee P (2016) Assessment of composite waste disposal in aerospace industries. Procedia Environ Sci 35:563–570. https://doi.org/10.1016/j.proenv.2016.07.041

    Article  Google Scholar 

  47. Sakellariou N (2018) Current and potential decommissioning scenarios for end-of-life composite wind blades. Energy Syst 9:981–1023. https://doi.org/10.1007/s12667-017-0245-9

    Article  Google Scholar 

  48. Naqvi SR, Prabhakara HM, Bramer EA, Dierkes W, Akkerman R, Brem G (2018) A critical review on recycling of end-of-life carbon fibre/glass fibre reinforced composites waste using pyrolysis towards a circular economy. Resour Conserv Recycl 136:118–129. https://doi.org/10.1016/j.resconrec.2018.04.013

    Article  Google Scholar 

  49. Perrin D, Clerc L, Leroy E, Lopez-Cuesta J-M, Bergeret A (2008) Optimizing a recycling process of SMC composite waste. Waste Manag 28:541–548. https://doi.org/10.1016/j.wasman.2007.03.026

    Article  CAS  Google Scholar 

  50. Pervaiz M, Panthapulakkal S, Birat KC, Sain M, Tjong J (2016) Emerging trends in automotive lightweighting through novel composite materials. Mater Sci Appl 7:26–38. https://doi.org/10.4236/msa.2016.71004

    Article  Google Scholar 

  51. Pickering KL, Beg MDH (2010) 12 – Quality and durability of recycled composite materials. In: Goodship Recycling and Reuse of Waste Composites VBT-M (ed) Woodhead publishing series in composites science and engineering. Woodhead Publishing Elsevier, Cambridge, UK, pp 303–327

    Google Scholar 

  52. Cherrington R, Goodship V, Meredith J, Wood BM, Coles SR, Vuillaume A, Feito-Boirac A, Spee F, Kirwan K (2012) Producer responsibility: defining the incentive for recycling composite wind turbine blades in Europe. Energy Policy 47:13–21. https://doi.org/10.1016/j.enpol.2012.03.076

    Article  Google Scholar 

  53. Zhou L, Xu Z (2012) Response to waste electrical and electronic equipments in China: legislation, recycling system, and advanced integrated process. Environ Sci Technol 46:4713–4724. https://doi.org/10.1021/es203771m

    Article  CAS  Google Scholar 

  54. Khalil YF (2018) Comparative environmental and human health evaluations of thermolysis and solvolysis recycling technologies of carbon fiber reinforced polymer waste. Waste Manag 76:767–778. https://doi.org/10.1016/j.wasman.2018.03.026

    Article  CAS  Google Scholar 

  55. Directive 2000/53/EC of the european parliament and of the council (2000). https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02000L0053-20130611&qid=1405610569066&from=EN

  56. Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment (WEEE). https://eur-lex.europa.eu/resource.html?uri=cellar:ac89e64f-a4a5-4c13-8d96-1fd1d6bcaa49.0004.02/DOC_1&format=PDF

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera A. Alvarez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rosales, C., Alvarez, V.A., Ludueña, L.N. (2020). Second Life of Polymeric-Based Materials: Strategies and Performance. In: Kharissova, O.V., Martínez, L.M.T., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-11155-7_87-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11155-7_87-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11155-7

  • Online ISBN: 978-3-030-11155-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics