Skip to main content

Photocatalysis for Wastewater Treatment with Special Emphasis on Plastic Degradation

  • Living reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

Advanced oxidation process such as photocatalysis is seen as a potential future technology to offer clean water for various human needs. Through this process, different organic pollutants and recalcitrant chemicals are effectively removed from both water and wastewater. Some of the AOPs, such as ozonation (O3), catalysis by iron ions, electrodes, metal oxides, UV/Fenton, UV/hydrogen peroxide (H2O2), etc., generate harmful intermediates which restrict their full-scale implementation. Alternatively, irradiation techniques such as photocatalysis are a viable option and have shown to treat wastewater contaminated with hazardous chemicals, organic dyes, pesticides, antibiotics, viruses, bacteria, protozoa, etc., without producing toxic levels of by-products. This chapter reviews emerging aspects of photocatalysis for treatment of various recalcitrant pollutants with a special emphasis on polyethylene degradation. It summarizes the source, types, mechanism, and parameters of wastewater treatment using photocatalytic activity. Polyethylene is well known as serious cause of threats to human health and environment. Polyethylene, polystyrene, plastic film, and polypropylene degradation has been shown to occur via photocatalysis. This could be achieved using TiO2, ZnO, and doped and undoped metal oxides as photocatalysts. Also, photocatalytic degradation is compared with microbial techniques for polyethylene degradation along with brief reports on novel photobioreactors; a combination of microbial and photocatalytic reactors in degradation of polyethylene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Zhang X, Zhou J, Gu Y, Fan D (2015) Visible-light photocatalytic activity of N doped TiO2 nanotube arrays on acephate degradation. J Nanomater 2015:1–6

    Google Scholar 

  2. Tondera K, Klaer K, Gebhardt J, Wingender J, Koch C, Horstkott M, Strathmann M, Jurzik L, Hamza IA, Pinnekamp J (2015) Reducing pathogens in combined sewer overflows using ozonation or UV irradiation. Int J Hyg Environ Health 218:731–741

    Article  CAS  Google Scholar 

  3. Babu SG, Aparna P, Satishkumar G, Ashokkumar M, Neppolian B (2017) Ultrasound assisted mineralization of organic contaminants using a recyclable LaFeO3 and Fe3+/persulfate Fenton-like system. Ultrason Sonochem 34:924–930

    Article  CAS  Google Scholar 

  4. Lang XJ, Chen XD, Zhao JC (2014) Heterogeneous visible light photocatalysis for selective organic transformations. Chem Soc Rev 43:473

    Article  CAS  Google Scholar 

  5. Yurdakal S, Tek BS, Değirmenci Ç, Palmisano G (2017) A serial publication dealing with topical themes in catalysis and related subjects. Catal Today 281:53

    Article  CAS  Google Scholar 

  6. Shimura K, Yoshida H (2011) Heterogeneous photocatalytic hydrogen production from water and biomass derivatives. Energy Environ Sci 4:2467

    Article  CAS  Google Scholar 

  7. Feng XJ, Sloppy JD, LaTempa TJ, Paulose M, Komarneni S, Bao NZ, Grimes CA (2011) Synthesis and deposition of ultrafine Pt nanoparticles within high aspect ratio TiO2 nanotube arrays: application to the photocatalytic reduction of carbon dioxide. J Mater Chem 21:13429

    Article  CAS  Google Scholar 

  8. Bhatia V, Dhir A (2016) Transition metal doped TiO2 mediated photocatalytic degradation of anti-inflammatory drug under solar irradiations. J Environ Chem Eng 4:1267–1273

    Article  CAS  Google Scholar 

  9. Blanco-Vega MP, Guzmán-Mar JL, Villanueva-Rodríguez M, Maya-Treviño L, Garza-Tovar LL, Hernández-Ramírez A, Hinojosa-Reyes L (2017) Photocatalytic elimination of bisphenol A under visible light using Ni-doped TiO2 synthesized by microwave assisted sol-gel method. Mater Sci Semicond Process 71:275–282

    Article  CAS  Google Scholar 

  10. Iervolino G, Vaiano V, Sannino D, Rizzo L, Sarno G, Ciambelli P (2015) Influence of operating conditions in the photo-fenton removal of tartrazine on structured catalysts. Chem Eng Trans 43:979–984

    Google Scholar 

  11. Oller I, Malato S, Sanchez-Perez JA (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination - A review. Sci Total Environ 409(20):4141–4166

    Google Scholar 

  12. Brienza M, Mahdi Ahmed M, Escande A, Plantard G, Scrano L, Chiron S, Bufo SA, Goetz V (2016) Use of solar advanced oxidation processes for wastewater treatment: follow-up on degradation products, acute toxicity, genotoxicity and estrogenicity. Chemosphere 148:473–480

    Article  CAS  Google Scholar 

  13. Manassero A, Satuf ML, Alfano OM (2017) Photocatalytic degradation of an emerging pollutant by TiO2-coated glass rings: a kinetic study. Environ Sci Pollut Res 24:6031–6039

    Article  CAS  Google Scholar 

  14. Vela N, Calín M, Yanez-Gascon MJ, Garrido I, Perez-Lucas G, Fenoll J, Navarro S (2018) Photocatalytic oxidation of six endocrine disruptor chemicals in wastewater using ZnO at pilot plant scale under natural sunlight. Environ Sci Pollut Control Ser 35(25):34995–35007

    Article  CAS  Google Scholar 

  15. Tsoumachidou S, Velegraki T, Antoniadis A, Poulios I (2017) Greywater as a sustainable water source: a photocatalytic treatment technology under artificial and solar illumination. J Environ Manag 195:232–241

    Article  CAS  Google Scholar 

  16. Mamba G, Mishra AK (2016) Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl Catal B Environ 198:347–377

    Article  CAS  Google Scholar 

  17. Thiagarajan S, Sanmugam A, Vikraman D (2017) Facile methodology of Sol-Gel synthesis for metal oxide nanostructures. In: Recent applications in sol–gel synthesis. Usha Chandran, Intech Open Limited, UK

    Google Scholar 

  18. Khalil I, Julkapli N, Yehye W, Basirun W, Bhargava S (2016) Graphene–gold nanoparticles hybrid – synthesis, functionalization, and application in a electrochemical and surface-enhanced raman scattering biosensor. Materials 9:406–444

    Article  CAS  Google Scholar 

  19. Varma A, Mukasyan AS, Rogachev AS, Manukyan KV (2016) Solution combustion synthesis of nanoscale materials. Chem Rev 116:14493–14586

    Article  CAS  Google Scholar 

  20. Newaz Mohammed B, Chowdhury F, Md. Obaidullah, Md. Shahadat Hossain, Rashid R, Akter Y, Furusawa T, Sato M, Suzuki N (2019) Ultrasonic-assisted synthesis, characterization, and photocatalytic application of SiO2 at TiO2 core-shell nanocomposite particles. J Nanomater 2019:1–11

    Google Scholar 

  21. Yu M, Wang J, Tang L, Feng C, Liu H, Zhang H, Peng B, Chen Z, Xie Q (2020) Intimate coupling of photocatalysis and biodegradation for wastewater treatment: mechanisms, recent advances and environmental applications. Water Res. https://doi.org/10.1016/j.watres.2020.115673

  22. Xing Z, Zhou W, Du F, Qu Y, Tian G, Pan K, Tian C, Fu H (2014) A floating macro/mesoporous crystalline anatase TiO2 ceramic with enhanced photocatalytic performance for recalcitrant wastewater degradation. Dalton Trans 43(2):790–798

    Article  CAS  Google Scholar 

  23. Zhou D, Xu Z, Dong S, Huo M, Dong S, Tian X, Cui B, Xiong H, Li T, Ma D (2015) Intimate coupling of photocatalysis and biodegradation for degrading phenol using different light types: visible light vs UV light. Environ Sci Technol 49(13):7776–7783

    Article  CAS  Google Scholar 

  24. Geng H, Xu Q, Wu M, Ma H, Zhang P, Gao T, Qu L, Ma T, Li C (2019) Plant leaves inspired sunlight-driven purifier for high-efficiency clean water production. Nat Commun 10:1512

    Article  CAS  Google Scholar 

  25. Zhang B, Ji M, Qiu Z, Liu H, Wang J, Li J (2011) Microbial population dynamics during sludge granulation in an anaerobic-aerobic biological phosphorus removal system. Bioresour Technol 102(3):2474–2480

    Article  CAS  Google Scholar 

  26. Molinari R, Argurio P (2018) PMRs in photocatalytic synthesis of organic compounds. In: Basile A, Mozia S, Molinari R (eds) Current trends and future developments on (Bio-)membranes – photocatalytic membranes and photocatalytic membrane reactors. Elsevier, Amsterdam, p 209231

    Google Scholar 

  27. Argurio P, Fontananova E, Molinari R, Drioli E (2018) Photocatalytic membranes in photocatalytic membrane reactors. PRO 6:162

    CAS  Google Scholar 

  28. Zheng X, Shen Z-P, Shi L, Cheng R, Yuan D-Y (2017) Photocatalytic membrane reactors (PMRs) in water treatment: configurations and influencing factors. Catalysts 7:224

    Article  CAS  Google Scholar 

  29. Brosillon S, Lhomme L, Vallet C, Bouzaza A, Wolbert D (2008) Gas phase photocatalysis and liquid phase photocatalysis: interdependence and influence of substrate concentration and photon flow on degradation reaction kinetics. Appl Catal B Environ 78:232–241

    Article  CAS  Google Scholar 

  30. Molinari R, Lavorato C, Argurio P, Szymanski K, Darowna D, Mozia S (2019) Overview of photocatalytic ´membrane reactors in organic synthesis, energy storage and environmental applications. Catalysts 9:239

    Article  CAS  Google Scholar 

  31. Bortey-Sam N, Nakayama SMM, Ikenaka Y, Akoto O, Baidoo E, Mizukawa H, Ishizuka M (2015) Health risk assessment of heavy metals and metalloid in drinking water from communities near gold mines in Tarkwa, Ghana. Environ Monit Assess 187:397

    Article  CAS  Google Scholar 

  32. Wu J, lin F, Ji HZ, Hu C, Wong MH, Hu D, Cai Z (2019) Formation of dioxins from triclosan with active chlorine: a potential risk assessment. J Hazard Mater 367:128–136

    Article  CAS  Google Scholar 

  33. Płaczek M, Patyna A, Witczak S (2017) Technical evaluation of photobioreactors for microalgae cultivation. E3S Web Conf 19:02032

    Article  CAS  Google Scholar 

  34. Asghar W, Qazi IA, Ilyas H, Khan AA, Awan MA, Aslam MR (2011) Comparative solid phase photocatalytic degradation of polythene films with doped and undoped TiO. J Nanomater 8(2):461930

    Google Scholar 

  35. Phonsy PD, Yesodharan S, Yesodharan EP (2015) Enhancement of semiconductor mediated photocatalytic removal of polyethylene plastic wastes from the environment by oxidizers. Res J Recent Sci 4(10):105–112

    CAS  Google Scholar 

  36. Wang S, Wang J (2018) Degradation of triclosan and its main intermediates during the combined irradiation and biological treatment. Environ Technol 39:1115–1122

    Article  CAS  Google Scholar 

  37. Iovino P, Chianese S, Prisciandaro M, Musmarra D (2019) Triclosan photolysis: operating condition study and photo-oxidation pathway. Chem Eng J 377:121045

    Article  CAS  Google Scholar 

  38. Alfiya Y, Friedler E, Westphal J, Olsson O, Dubowski Y (2017) Photodegradation of micropollutants using V-UV/UV-C processes; triclosan as a model compound. Sci Total Environ 601–602:397–404

    Google Scholar 

  39. Chen L, Wang Z, Qian C, He Y (2018) Effects of inorganic anions on the photolysis of triclosan under UV irradiation. Water Sci Technol 78:1476–1480

    Article  CAS  Google Scholar 

  40. Reny TT, Sandhyarani N (2013) Enhancement in the photocatalytic degradation of low density polyethylene–TiO2 nanocomposite films under solar irradiation. RSC Adv 3(33):14080–14087

    Article  CAS  Google Scholar 

  41. Sadaqat A, Ishtiaq AQ, Muhammad A, Zahiruddin K, Thomas CV, Tahir Mehmood C (2016) Photocatalytic degradation of low density polyethylene (LDPE) films using titania nanotubes. Environ Nanotechnol Monit Manage 5:44–53

    Article  CAS  Google Scholar 

  42. Tajkia ST, Karthik LK, Swaraj P, Joydeep D (2019) Visible light photocatalytic degradation of microplastic residues with zinc oxide nanorods. Environ Chem Lett 17:1341–1346

    Article  CAS  Google Scholar 

  43. Romero-Sáez M, Jaramillo LY, Saravanan R, Benito N, Pabón E, Mosquera E, Gracia F (2017) Notable photocatalytic activity of TiO2-polyethylene nanocomposites for visible light degradation of organic pollutants. Express Polym Lett 11(11):899–909

    Article  CAS  Google Scholar 

  44. Parisa K, Saied NK, Amir A, Rasoul EN (2019) Grafted ZnO nanoparticles used for development in photocatalytic degradation performance of polyethylene. Polym Bull 76:3593–3606

    Article  CAS  Google Scholar 

  45. Olajire AA, Mohammed AA (2020) Green synthesis of nickel oxide nanoparticles and studies of their photocatalytic activity in degradation of polyethylene films. Adv Powder Technol 31(1):211–218

    Article  CAS  Google Scholar 

  46. Gharehdashli A, Saeed M, Hamed R (2020) Photodegradation of low-density polyethylene with prooxidant and photocatalyst. J Appl Polym Sci:e48979

    Google Scholar 

  47. Nelvi S, Srimala S (2017) Photodegradation improvement of low-density polyethylene thin film with gC3N4/5ZnO/TiO2 photocatalysts. Solid State Phenom 264:236–239

    Article  Google Scholar 

  48. Vijayasree J, Uma Maheswari Devi P (2019) Studying the effect of biosilver nanoparticles on polyethylene degradation. Appl Nanosci 9:491–504

    Article  CAS  Google Scholar 

  49. Bandara WRLN, de Silva RM, de Silva KMN, Dahanayake D, Gunasekar S, Thanabalasingam K (2017) Is nano ZrO2 a better photocatalyst than nano TiO2 for degradation of plastics? RSC Adv 7:46155–46163

    Article  CAS  Google Scholar 

  50. Maria CA, Juan FV, Juan MH, Javier RDR, Virginia B, Cristina S, Erika IG (2020) Microplastic pollution reduction by a carbon and nitrogen-doped TiO2: effect of pH and temperature in the photocatalytic degradation process. J Hazard Mater 395(5):122632

    Google Scholar 

  51. Rajni V, Sachchidanand S, Dalai MK, Saravanan M, Ved VA, Avanish KS (2017) Photocatalytic degradation of polypropylene film using TiO2-based nanomaterials under solar irradiation. Mater Des 133(5):10–18

    Google Scholar 

  52. Alvarado J, Guillermo A, Fatima P (2016) Study of the effect of the dispersion of functionalized nanoparticles TiO2 with photocatalytic activity in LDPE. Polym Degrad Stab 134:376–382

    Article  CAS  Google Scholar 

  53. Wanichaya M, Titarat T, Wisanu P, Keiichi NI (2018) Photocatalytic properties and plastic degradation of TiO2 nanocomposite with synthetic-rutile from natural ore. J Japan Soc Powder Powder Metallurgy 65(11):719–724

    Google Scholar 

  54. Mohammad MK, Amin H, Nasim N, Lee M, Ali AB (2014) Photocatalytic degradation of polypropylene/TiO2, nano-composites. Mater Res. https://doi.org/10.1590/1516-1439.267214

  55. Siti Nor Qurratu Aini Abd Aziz, Rbiatul Adawiyah Kamazahruman. Srimala Sreekantan, Ming-Thong Ong, Geetha Sahgal, Swee-Yong Pung (2017) Effect of deposition temperature on the growth of tungsten oxide layer deposited on polyethylene terephthalate fibers. Procedia Eng 184:695–707

    Article  CAS  Google Scholar 

  56. Tanti H, Novita A, Siti M (2014) The effect of sol-gel temperature and solvent polyethylene glycol (peg) in zno- tio2 photocatalyst act as degrader of textile dyeing liquid waste. ALCHEMY Jurnal Penelitian Kimia 10:2

    Google Scholar 

  57. Yeshuo D, Fanjun M (2020) Effect of polyethylene glycol on crystal growth and photocatalytic activity of anatase TiO2 single crystals. RSC Adv 10:12511–12518

    Article  Google Scholar 

  58. Mahsa P, Sami E, Habibi-Yangjeh A, Galia P, Magnus W, Omer N (2018) Polyethylene glycol-doped BiZn2VO6 as a high-efficiency solar-light-activated photocatalyst with substantial durability toward photodegradation of organic contaminations. RSC Adv 8:37480–37491

    Article  Google Scholar 

  59. Nikolay S, Anna K, Valeriy T, Alexander A (2020) Plasma-assisted synthesis and deposition of molybdenum oxide nanoparticles on polyethylene terephthalate for photocatalytic degradation of rhodamine B. Plasma Process Polym. https://doi.org/10.1002/ppap.202000012

  60. Arbiba Z, Ruiza J, Álvarez-Díaz P, Garrido-Péreza C, Barraganab J, Peralesa JA (2013) Long term outdoor operation of a tubular airlift pilot photobioreactor and a high rate algal pond as tertiary treatment of urban wastewater. Ecol Eng 52:143–153

    Article  Google Scholar 

  61. Lee CS, Lee S-A, Ko S-R, Oh H-M, Ahn C-Y (2015) Effects of photoperiod on nutrient removal, biomass production, and algal-bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater. Water Res 68:680–691

    Article  CAS  Google Scholar 

  62. Khan MF, Yu LL, Achari G, Tay JH (2019) Degradation of sulfolane in aqueous media by integrating activated sludge and advanced oxidation process. Chemosphere 222:1–8

    Article  CAS  Google Scholar 

  63. Wang YJ, Wang QS, Zhan XY, Wang FM, Safdar M, He J (2013) Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale 5:8326

    Article  CAS  Google Scholar 

  64. Kundu P, Kaur A, Mehta S, Kansal S (2014) Removal of ofloxacin from aqueous phase using Ni-doped TiO2 nanoparticles under solar irradiation. J Nanosci Nanotechnol 14:6991–6995

    Article  CAS  Google Scholar 

  65. Boxi SS, Paria S (2015) Visible light induced enhanced photocatalytic degradation of organic pollutants in aqueous media using Ag doped hollow TiO2 nanospheres. RSC Adv 5:37657–37668

    Article  CAS  Google Scholar 

  66. Yi C, Liao Q, Deng W, Huang Y, Mao J, Zhang B, Wu G (2019) The preparation of amorphous TiO2 doped with cationic S and its application to the degradation of DCFs under visible light irradiation. Sci Total Environ 684:527–536

    Article  CAS  Google Scholar 

  67. Markov SL, Vidakovit AM (2014) Testing methods for antimicrobial activity of TIO2 photocatalyst. Acta Periodica Technologica 45(45):141–152

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naresh Kumar Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Arumugam, K., Meenkashisundaram, S., Sharma, N.K. (2020). Photocatalysis for Wastewater Treatment with Special Emphasis on Plastic Degradation. In: Kharissova, O.V., Martínez, L.M.T., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-11155-7_41-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11155-7_41-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11155-7

  • Online ISBN: 978-3-030-11155-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics