Skip to main content

Nanomaterials: Applications in Biomedicine and Biotechnology

  • Living reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

Nanoparticle synthesis has elicited intense interest within the past decade. Nanoparticle size ranges from 100 to 500 nm and can be solid particles or colloidal in nature. When this particles size or its surface characteristics are manipulated, they can be developed into imaging agents, encasing therapeutic, or a smart system for use in diverse application. Drug formulations from nanoparticle-based materials have opened up a novel field of research in the treatment and management of challenging diseases. This system can be designed to deliver drug to target tissues as well as provide the controlled release of these drugs. The continual drug delivery to target tissues results in declining drug-related toxicity as well as increasing patient’s compliance with lower doing index. Some illness in which nanotechnology has made positive impact includes AIDS, cancer, and several other related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3(1):16–20. https://doi.org/10.1021/nn900002m

    Article  CAS  Google Scholar 

  2. Emerich DF, Thanos CG (2007) Targeted nanoparticle-based drug delivery and diagnosis. J Drug Target 15(3):163–183

    CAS  Google Scholar 

  3. Biswas AK, Islam MR, Choudhury ZS et al (2014) Nanotechnology based approaches in cancer therapeutics. Adv Nat Sci Nanosci Nanotechnol 5:043001

    Google Scholar 

  4. Wicki A, Witzigmann D, Balasubramanian V, Huwyler J (2015) Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 200:138–157

    CAS  Google Scholar 

  5. Vo TN, Kasper FK, Mikos AG (2012) Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv Drug Deliv Rev 64(12):1292–1309

    CAS  Google Scholar 

  6. Osakwe O, Rizvi SAA (2016) Social aspects of drug discovery, development and commercialization. Academic, Cambridge, MA

    Google Scholar 

  7. Dadwal A, Baldi A, Narang RK (2018) Nanoparticles as carriers for drug delivery in cancer. J Artif Cells Nanomed Biotechnol 46(S2):295–305. https://doi.org/10.1080/21691401.2018.1457039

    Article  CAS  Google Scholar 

  8. Mu Q, Jiang G, Chen L et al (2014) Chemical basis of interactions between engineered nanoparticles and biological systems. Chem Rev 114(15):7740–7781

    CAS  Google Scholar 

  9. Prado-Gotor R, Grueso E (2011) A kinetic study of the interaction of DNA with gold nanoparticles: mechanistic aspects of the interaction. Phys Chem Chem Phys 13(4):1479–1489

    CAS  Google Scholar 

  10. Park HS, Nam SH, Kim J et al (2016) Clear-cut observation of clearance of sustainable upconverting nanoparticles from lymphatic system of small living mice. Sci Rep 6:27407

    Google Scholar 

  11. Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5(4):505–515

    CAS  Google Scholar 

  12. Liu R, Kay BK, Jiang S, Chen S (2009) Nanoparticle delivery: targeting and nonspecific binding. MRS Bull 34(6):432–440

    CAS  Google Scholar 

  13. Friedman AD, Claypool SE, Liu R (2013) The smart targeting of nanoparticles. Curr Pharm Des 19(35):6315–6329

    CAS  Google Scholar 

  14. Pramanik AK, Siddikuzzaman, Palanimuthu D et al (2016) Biotin decorated gold nanoparticles for targeted delivery of a smart-linked anticancer active copper complex: in vitro and in vivo studies. Bioconjug Chem 27(12):2874–2885

    CAS  Google Scholar 

  15. Kelly C, Jefferies C, Cryan S-A (2011) Targeted liposomal drug delivery to monocytes and macrophages. J Drug Deliv 2011:727241. https://doi.org/10.1155/2011/727241

    Article  CAS  Google Scholar 

  16. Pattni BS, Chupin VV, Torchilin VP et al (2015) New developments in liposomal drug delivery. Chem Rev 115(19):10938–10966

    CAS  Google Scholar 

  17. Rizzo LY, Theek B, Storm G et al (2013) Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications. Curr Opin Biotechnol 24(6):1159–1166

    CAS  Google Scholar 

  18. Shrivastava S, Dash D (2009) Applying nanotechnology to human health: revolution in biomedical sciences. J Nanotechnol 2009:1–14. https://doi.org/10.1155/2009/184702

    Article  CAS  Google Scholar 

  19. Sadrieh N, Miller TJ (2006) Nanotechnology: regulatory perspective for drug development in cancer therapeutics. In: Amiji MM (ed) Nanotechnology for cancer therapy. CRC Press, Boca Raton, pp 139–156

    Google Scholar 

  20. Rivera Gil P, Huhn D, Del Mercato LL et al (2010) Nanopharmacy: inorganic nanoscale devices as vectors and active compounds. Pharmacol Res 62(2):115–125

    CAS  Google Scholar 

  21. Weissig V, Pettinger TK, Murdock N (2014) Nanopharmaceuticals (Part 1): products on the market. Int J Nanomedicine 9:4357–4373

    CAS  Google Scholar 

  22. Öztürk-Atar K, Eroglu H, Gürsoy RN, Çalis S (2019) Current advances in nanopharmaceuticals. J Nanosci Nanotechnol 19:3686–3705

    Google Scholar 

  23. Zolnik BS, Sadrieh N (2009) Regulatory perspective on the importance of ADME assessment of nanoscale material containing drugs. Adv Drug Deliv Rev 61(6):422–427

    CAS  Google Scholar 

  24. Mostafalou S, Mohammadi H, Ramazani A, Abdollahi M (2013) Different biokinetics of nanomedicines linking to their toxicity; an overview. Daru 21(1):1

    Google Scholar 

  25. Berkner S, Schwirn K, Voelker D (2016) Nanopharmaceuticals: tiny challenges for the environmental risk assessment of pharmaceuticals. Environ Toxicol Chem 35(4):780–787

    CAS  Google Scholar 

  26. Wang RB, Billone PS, Mullett WM (2013) Nanomedicine in action: an overview of cancer nanomedicine on the market and in clinical trials. J Nanomater 2013:1–12

    Google Scholar 

  27. Jeevanandam J, Barhoum A, Chan YS et al (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074

    CAS  Google Scholar 

  28. Ogris M, Oupicky D (2013) Nanotechnology for nucleic acid delivery. Humana Press, New York

    Google Scholar 

  29. Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13(1):238–252

    CAS  Google Scholar 

  30. Puri A, Kramer-Marek G, Campbell-Massa R (2008) HER2-specific affibody-conjugated thermosensitive liposomes (affisomes) for improved delivery of anticancer agents. J Liposome Res 18(4):293–307

    CAS  Google Scholar 

  31. Jain S, Tiwary AK, Sapra B, Jain N (2007) Formulation and evaluation of ethosomes for transdermal delivery of lamivudine. AAPS PharmSciTech 8(4):249–257

    Google Scholar 

  32. Dubey V, Mishra D, Nahar M et al (2010) Enhanced transdermal delivery of an anti-HIV agent via ethanolic liposomes. Nanomedicine 6(4):590–596

    CAS  Google Scholar 

  33. Suk JS, Xu Q, Kim N et al (2016) PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 99:28–51

    CAS  Google Scholar 

  34. Milla P, Dosio F, Cattel L (2012) PEGylation of proteins and liposomes: a powerful and flexible strategy to improve the drug delivery. Curr Drug Metab 13:105–119

    CAS  Google Scholar 

  35. Petrilli R, Eloy JO, Lee RJ et al (2018) Preparation of immunoliposomes by direct coupling of antibodies based on a thioether bond. Methods Mol Biol 1674:229–237

    CAS  Google Scholar 

  36. Brewer E, Coleman J, Lowman A (2011) Emerging technologies of polymeric nanoparticles in cancer drug delivery. J Nanomater 2011:1–10

    Google Scholar 

  37. Owens DE III, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307(1):93–102

    CAS  Google Scholar 

  38. Pandey R, Sharma A, Zahoor A et al (2003) Poly(DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J Antimicrob Chemother 52:981–986

    CAS  Google Scholar 

  39. Seong JH, Lee KM, Kim ST et al (2006) Polyethylenimine based antisense oligodeoxynucleotides of IL-4 suppresses the production of IL-4 in a murine model of airway inflammation. J Gene Med 8:314–323

    CAS  Google Scholar 

  40. Azarmi S, Tao X, Chen H (2006) Formulation and cytotoxicity of doxorubicin nanoparticles carried by dry powder aerosol particles. Int J Pharm 319:155–161

    CAS  Google Scholar 

  41. Valls R, Vega E, Garcia ML et al (2008) Transcorneal permeation in a corneal device of non-steroidal anti-inflammatory drugs in drug delivery systems. Open Med Chem J 2:66–71

    CAS  Google Scholar 

  42. Kimura S, Egashira K, Chen L (2009) Nanoparticle-mediated delivery of nuclear factor κB decoy into lungs ameliorates monocrotaline-induced pulmonary arterial hypertension. Hypertension 53(5):877–883

    CAS  Google Scholar 

  43. Yang X, Zhu B, Dong T et al (2008) Interactions between an anticancer drug and polymeric micelles based on biodegradable polyesters. Macromol Biosci 8(12):1116–1125

    CAS  Google Scholar 

  44. Sun T, Zhang YS, Pang B et al (2014) Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Eng 53:12320–12364

    CAS  Google Scholar 

  45. Lee CC, Mackay JA, Frechet JM et al (2005) Designing dendrimers for biological applications. Nat Biotechnol 23:1517–1526

    CAS  Google Scholar 

  46. Omidi Y, Barar J (2009) Induction of human alveolar epithelial cell growth factor receptors by dendrimeric nanostructures. Int J Toxicol 28:113–122

    CAS  Google Scholar 

  47. Hamidi A, Sharifi S, Davaran S et al (2012) Novel aldehyde terminated dendrimers; synthesis and cytotoxicity assay. Bioimpacts 2:97–103

    CAS  Google Scholar 

  48. Nourazarian AR, Pashaei-Asl R, Omidi Y et al (2012) c-Src antisense complexed with PAMAM denderimes decreases of c-Src expression and EGFR-dependent downstream genes in the human HT-29 colon cancer cell line. Asian Pac J Cancer Prev 13:2235–2240

    Google Scholar 

  49. Madaan K, Kumar S, Poonia N et al (2014) Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci 6:139–150

    Google Scholar 

  50. Palmerston Mendes L, Pan J, Torchilin VP (2017) Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules 22:1401

    Google Scholar 

  51. Gillies ER, Jonsson TB, Frechet JM (2004) Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers. J Am Chem Soc 126:11936–11943

    CAS  Google Scholar 

  52. Kalomiraki M, Thermos K, Chaniotakis NA (2016) Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications. Int J Nanomedicine 11:1–12

    CAS  Google Scholar 

  53. Yoon AR, Kasala D, Li Y et al (2016) Antitumor effect and safety profile of systemically delivered oncolytic adenovirus complexed with EGFR-targeted PAMAM-based dendrimer in orthotopic lung tumor model. J Control Release 231:2–16

    CAS  Google Scholar 

  54. Svenson S (2009) Dendrimers as versatile platform in drug delivery applications. Eur J Pharm Biopharm 71:445–462

    CAS  Google Scholar 

  55. Heidari Majd M, Asgari D, Barar J et al (2013) Tamoxifen loaded folic acid armed PEGylated magnetic nanoparticles for targeted imaging and therapy of cancer. Colloids Surf B: Biointerfaces 106:117–125

    CAS  Google Scholar 

  56. Leung SL, Zha Z, Cohn C et al (2014) Anti-EGFR antibody conjugated organic-inorganic hybrid lipid nanovesicles selectively target tumor cells. Colloids Surf B: Biointerfaces 121:141–149

    CAS  Google Scholar 

  57. Barar J, Kafil V, Majd MH et al (2015) Multifunctional mitoxantrone-conjugated magnetic nanosystem for targeted therapy of folate receptor-overexpressing malignant cells. J Nanobiotechnol 13:26

    Google Scholar 

  58. Azhdarzadeh M, Atyabi F, Saei AA et al (2016) Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer. Colloids Surf B: Biointerfaces 143:224–232

    CAS  Google Scholar 

  59. Senapati S, Mahanta AK, Kumar S et al (2018) Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 3:7

    Google Scholar 

  60. Bawarski WE, Chidlowsky E, Bharali DJ et al (2008) Emerging nanopharmaceuticals. Nanomedicine 4:273–282

    CAS  Google Scholar 

  61. Mu Q, Yu J, Mcconnachie LA et al (2018) Translation of combination nanodrugs into nanomedicines: lessons learned and future outlook. J Drug Target 26:435–447

    CAS  Google Scholar 

  62. Michalet X, Pinaud F, Bentolila L et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544

    CAS  Google Scholar 

  63. El-Sayed IH, Huang X, El-Sayed MA (2006) Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 239(1):129–135

    CAS  Google Scholar 

  64. Hild W, Breunig M, Gopferich A (2008) Quantum dots–nano-sized probes for the exploration of cellular and intracellular targeting. Eur J Pharm Biopharm 68(2):153–168

    Google Scholar 

  65. Barathmanikanth S, Kalishwaralal K, Sriram M et al (2010) Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice. J Nanobiotechnol 8(1):16

    Google Scholar 

  66. Liao YH, Chang YJ, Yoshiike Y et al (2012) Negatively charged gold nanoparticles inhibit Alzheimer’s amyloid-β fibrillization, induce fibril dissociation, and mitigate neurotoxicity. Small 8(23):3631–3639

    CAS  Google Scholar 

  67. Leonavičienė L, Kirdaitė G, Bradūnaitė R et al (2012) Effect of gold nanoparticles in the treatment of established collagen arthritis in rats. Medicina (Kaunas) 48(2):91–101

    Google Scholar 

  68. Spivak MY, Bubnov RV, Yemets IM et al (2013) Development and testing of gold nanoparticles for drug delivery and treatment of heart failure: a theranostic potential for PPP cardiology. EPMA J 4(1):20

    Google Scholar 

  69. Cha C, Shin SR, Annabi N et al (2013) Carbon based nanomaterials: multi-functional materials for biomedical engineering. ACS Nano 7:2891–2897

    CAS  Google Scholar 

  70. Bianco A, Kostarelos K, Partidos CD, Prato M (2005) Biomedical applications of functionalised carbon nanotubes. Chem Commun 7:571–577

    Google Scholar 

  71. Roldo M (2016) Carbon nanotubes in drug delivery: just a carrier? Ther Deliv 7:55–57

    CAS  Google Scholar 

  72. Harrison BS, Atala A (2007) Carbon nanotube applications for tissue engineering. Biomaterials 28:344–353

    CAS  Google Scholar 

  73. Yang S-T, Luo J, Zhou Q, Wang H (2012) Pharmacokinetics, metabolism and toxicity of carbon nanotubes for biomedical purposes. Theranostics 2:271–282

    CAS  Google Scholar 

  74. Chaudhuri P, Harfouche R, Soni S et al (2010) Shape effect of carbon nanovectors on angiogenesis. ACS Nano 4:574–582

    CAS  Google Scholar 

  75. Kolosnjaj J, Szwarc H, Moussa F (2007) Toxicity studies of fullerenes and derivatives. In: Chan WCW (ed) Bio-applications of nanoparticles. Springer, New York, pp 168–180

    Google Scholar 

  76. Liu W, Speranza G (2019) Functionalization of carbon nanomaterials for biomedical applications. C J Carbon Res 5:72. https://doi.org/10.3390/c5040072

    Article  CAS  Google Scholar 

  77. Pisanic TR II, Zhang Y, Wang TH (2014) Quantum dots in diagnostics and detection: principles and paradigms. Analyst 139(12):2968–2981

    CAS  Google Scholar 

  78. Marchesan S, Prato M (2013) Nanomaterials for (nano)medicine. ACS Med Chem Lett 4(2):147–149

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Islam, S. et al. (2020). Nanomaterials: Applications in Biomedicine and Biotechnology. In: Kharissova, O., Martínez, L., Kharisov, B. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-11155-7_4-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11155-7_4-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11155-7

  • Online ISBN: 978-3-030-11155-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics