Skip to main content

Nanotechnology for Electrical Energy Systems

Studies on the Energy Storage Capabilities and Energy Utilization Efficiency of Nanomaterials

  • Living reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

Nanotechnologies offer the possibilities to upgrade energy productivity and storage over all the fields of industry. The economically controled sustainable power source production through new technological arrangements and advanced production techniques are the current need. For the past few decades, all industries and every individual are consuming more amount of electrical energy. The demand on electrical energy is rapidly increasing every year. The storage of electrical energy is a challenging issue in energy sector. Current utilized batteries are not that much reliable for long time storage. Implementing nanotechnology to the energy storage is the current interest of research. Supercapacitors, Li-ion batteries, and hydrogen storage are the most recent technologies in the energy sector. There are several ways to fabricate the electrodes for the energy storage devices. Nano-based components like light-emitting diode provide efficient usage of electrical energy. This chapter is proposed to review the past, current and future role of different nanomaterials in the energy sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Vivek C, Balraj B, Thangavel S (2020) Electrical energy storage capability of flake like/spherical structured CuO/Ag nanocomposites synthesized via plasmonic green approach. J Electron Mater 49:1075–1080

    Article  CAS  Google Scholar 

  2. Rajangam K, Swetha Gowri K, Prem Kumar R, Surriya LM, Vishnu Raj S, Balraj B (2019) Green mediated fabrication and characterization of ZnO/Ag nanocomposite for energy storage applications. Mater Res Exp 6(9):095524

    Article  CAS  Google Scholar 

  3. Balraj B, Arulmozhi M, Siva C, Krithkadevi R (2017) Synthesis, characterization and electrochemical analysis of hydrothermal synthesized AgO incorporated ZrO2 nanostructures. Springer-J Mater Sci: Mater Electron 28(8):5906–5912

    CAS  Google Scholar 

  4. Rajangam K, Amuthameena S, Thangavel S, Sanjanadevi VS, Balraj B (2020) Synthesis and characterisation of Ag incorporated TiO2 nanomaterials for supercapacitor applications, J Mol Struct. https://doi.org/10.1016/j.molstruc.2020.128661

  5. Gielen D, Boshell F, Saygin D, Bazilian MD, Wagner N, Gorini R (2019) The role of renewable energy in the global energy transformation. Energ Strat Rev 24:38–50

    Article  Google Scholar 

  6. Speirs J, McGlade C, Slade R (2015) Uncertainty in the availability of natural resources: fossil fuels, critical metals and biomass. Energy Policy 87:654–664

    Article  Google Scholar 

  7. Kunlei Zhu, Chao Wang, Zixiang Chi, Fei Ke, Yang Yang, Anbang Wang, Weikun Wang, Lixiao Miao, (2019) How far away are lithium-sulfur batteries from commercialization? Front Energy Res. https://doi.org/10.3389/fenrg.2019.00123

  8. Chen T, Jin Y, Lv H et al (2020) Applications of lithium-ion batteries in grid-scale energy storage systems. Trans Tianjin Univ 26:208–217. https://doi.org/10.1007/s12209-020-00236-w

    Article  Google Scholar 

  9. Borri E, Tafone A, Zsembinszki G, Comodi G, Romagnoli A, Cabeza LF (2020) Recent trends on liquid air energy storage: a bibliometric. Anal Appl Sci 10:2773

    Article  CAS  Google Scholar 

  10. Gür TM (2018) Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ Sci 11:2696–2767

    Article  Google Scholar 

  11. Al-Foraih R, Sreekanth KJ, Al-Mulla A (2018) A techno-economic analysis of the integration of energy storage technologies in electric power systems. J Renew Sustain Energy 10:054102

    Article  Google Scholar 

  12. Staffell I, Scamman D, Abad AV, Balcombe P, Dodds PE, Ekins P, Shahd N, Warda KR (2019) The role of hydrogen and fuel cells in the global energy system. Energy Environ Sci 12(2):463–491

    Article  CAS  Google Scholar 

  13. Hirscher M et al (2020) Materials for hydrogen-based energy storage – past, recent progress and future outlook. J Alloys Compd 827:153548

    Article  CAS  Google Scholar 

  14. Bellost J et al (2019) Application of hydrides in hydrogen storage and compression: achievements, outlook and perspectives. Int J Hydrog Energy 44(15):7780–7808

    Article  CAS  Google Scholar 

  15. Yamada M, Watanabe T, Gunji T, Wu J, Matsumoto F (2020) Review of the design of current collectors for improving the battery performance in lithium-ion and post-lithium-ion batteries. Electrochem 1:124–159

    Article  Google Scholar 

  16. Jaschin PW, Gao Y, Li Y, Bo S-H (2020) A materials perspective on magnesium-ion-based solid-state electrolytes. J Mater Chem A 8(8):2875–2897

    Article  CAS  Google Scholar 

  17. Wang et al. (2018) Cryogenic electron microscopy for characterizing and diagnosing batteries. Joule. https://doi.org/10.1016/j.joule.2018.10.005

  18. Burresi M, Pratesi F, Riboli F, Wiersma D (2015) Complex photonic structures for light harvesting. Adv Opt Mater 3(6):722–743

    Article  CAS  Google Scholar 

  19. Liu Z, Lin C-H, Hyun B-R, Sher C-W, Lv Z, Luo B, Jiang F, Wu T, Ho C-H, Kuo H-C, He Jr H (2020) Micro-light-emitting diodes with quantum dots in display technology. Light Sci Appl 9(83)

    Google Scholar 

  20. Lozano G, Rodriguez S, Verschuuren M et al (2016) Metallic nanostructures for efficient LED lighting. Light Sci Appl 5:e16080

    Article  CAS  Google Scholar 

  21. Mourdikoudis S, Pallares RM, Thanh NTK (2018) Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10:12871–12934

    Article  CAS  Google Scholar 

  22. Banerjee T et al (2016) Multiparametric magneto-fluorescent nanosensors for the ultrasensitive detection of escherichia coli O157:H7. ACS Infect Dis 2(10):667–673

    Article  CAS  Google Scholar 

  23. Last JA, Russell P, Nealey PF, Murphy CJ (2010) The applications of atomic force microscopy to vision science. Invest Ophthalmol Vis Sci 51(12):6083–6094

    Article  Google Scholar 

  24. Saylan Y, Denizli A (2020) Virus detection using nanosensors. Nanosensors Smart Cities 2020:501–511

    Article  Google Scholar 

  25. Vikesland PJ (2018) Nanosensors for water quality monitoring. Nat Nanotech 13:651–660

    Article  CAS  Google Scholar 

  26. Kim BK, Sy S, Yu A, Zhang J (2015) Electrochemical supercapacitors for energy storage and conversion. In: Yan J (Ed) Handbook of clean energy systems. https://doi.org/10.1002/9781118991978.hces112

  27. Wang A, Kadam S, Li H et al (2018) Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Comput Mater 4(15):1–26

    Google Scholar 

  28. Samantara AK, Ratha S (2018) Components of supercapacitor. In: Materials development for active/passive components of a supercapacitor, briefs in materials. Springer, Singapore

    Google Scholar 

  29. Saleem AM, Desmaris V, Enoksson P (2016) Performance enhancement of carbon nanomaterials for supercapacitors. J Nanomater 2016:1537269, 17 pages

    Article  CAS  Google Scholar 

  30. Conway BE, Pell WG (2003) Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. J Solid State Electrochem 7(9):637–644

    Article  CAS  Google Scholar 

  31. Dai K, Wang X, Yin Y, Hao C, You Z (2016) Voltage fluctuation in a supercapacitor during a high-g impact. Sci Rep 6:38794

    Article  CAS  Google Scholar 

  32. Wu X-L, Xu A-W (2014) Carbonaceous hydrogels and aerogels for supercapacitors. J Mater Chem A 2:4852

    Article  CAS  Google Scholar 

  33. Deng J, Li J, Song S, Zhou Y, Li L (2020) Electrolyte-dependent supercapacitor performance on nitrogen-doped porous bio-carbon from gelatin. Nano 10:353

    CAS  Google Scholar 

  34. Parveen N, Hilal M, Han JI (2020) Newly design porous/sponge red phosphorus@graphene and highly conductive Ni2P electrode for asymmetric solid state supercapacitive device with excellent performance. Nano-Micro Lett 12(25):1–16

    Google Scholar 

  35. Chen GZ (2013) Understanding supercapacitors based on nano-hybrid materials with interfacial conjugation. Prog Nat Sci: Mater Int 23(3):245–255

    Article  CAS  Google Scholar 

  36. Zhao X, Sánchez BM, Dobsona PJ, Grant PS (2011) The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 3:839–855

    Article  CAS  Google Scholar 

  37. Yang G, Song Y, Wang Q, Zhang L, Deng L (2020) Review of ionic liquids containing, polymer/inorganic hybrid electrolytes for lithium metal batteries. Mater Des 190(5):108563

    Article  CAS  Google Scholar 

  38. Stampatori D, Raimondi PP, Noussan M (2020) Li-ion batteries: a review of a key technology for transport decarbonization. Energies 13:2638

    Article  CAS  Google Scholar 

  39. Olivetti EA, Ceder G, Gaustad GG, Fu X (2017) Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals. Joule 1(2):229–243

    Article  Google Scholar 

  40. Dustmann CH (2004) Advances in ZEBRA batteries. J Power Sources 127(1):85–92

    Article  CAS  Google Scholar 

  41. Hesse HC, Schimpe M, Kucevic D, Jossen A (2017) Lithium-ion battery storage for the grid—a review of stationary battery storage system design tailored for applications in modern power grids. Energies 10:2107

    Article  Google Scholar 

  42. Chawla N, Bharti N, Singh S (2019) Recent advances in non-flammable electrolytes for safer lithium-ion batteries. Batteries 5:19

    Article  CAS  Google Scholar 

  43. Subramanya U, Chua C, He Leong VG, Robinson R, Cruz Cabiltes GA, Singh P, Yip B, Bokare A, Erogbogbo F, Oh D (2020) Carbon-based artificial SEI layers for aqueous lithium-ion battery anodes. RSC Adv 10(2):674–681

    Article  CAS  Google Scholar 

  44. Vásquez FA, Thomas JE, Calderón JA (2020) Enhanced rate capability of lithium deficient spinel via controlling cooling rate. Solid State Ionics 345:115199

    Article  CAS  Google Scholar 

  45. Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Energy 18(5):252–264

    CAS  Google Scholar 

  46. Ajanovic A, Haas R (2019) Economic and environmental prospects for battery electric- and fuel cell vehicles: a review. Fuel Cells 19(5):515–529

    Article  CAS  Google Scholar 

  47. Chen J, Kuriyama N, Yuan H, Takeshita HT, Sakai T (2001) Electrochemical hydrogen storage in MoS nanotubes. J Am Chem Soc 123(47):11813–11814

    Article  CAS  Google Scholar 

  48. Virtanen T, Rudolph G, Lopatina A, Al-Rudainy B, Schagerlöf H, Puro L, Kallioinen M, Lipnizki F (2020) Analysis of membrane fouling by Brunauer-Emmet-teller nitrogen adsorption/desorption technique. Sci Rep 10:3427

    Article  CAS  Google Scholar 

  49. Conte M, Prosini PP, Passerini S (2004) Overview of energy/hydrogen storage: state-of-the-art of the technologies and prospects for nanomaterials. Mater Sci Eng B 108(1–2):2–8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Amuthameena, S., Balraj, B., Nandakumar, E. (2020). Nanotechnology for Electrical Energy Systems. In: Kharissova, O.V., Martínez, L.M.T., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-11155-7_150-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11155-7_150-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11155-7

  • Online ISBN: 978-3-030-11155-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics