Skip to main content

Nanostructured Polymers for Thermoelectric Conversion

  • Living reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

This chapter presents the most important advances in the development of thermoelectric (TE) materials based on nanostructured polymers for the conversion of thermal waste energy to electrical energy. Firstly, it is stablished the fundamentals of the thermoelectric materials (i.e., Seebeck and Peltier effect, electrical conductivity, thermal conductivity, Seebeck coefficient, and figure of merit) and explains briefly the main challenges about to enhance the figure of merit (ZT) (i.e., thermoelectric efficiency) of polymer materials and the strategies recently used to solve it (e.g., doping of conductive polymers and polymer nanocompounded). It is also reported the state of the art of nanostructured thermoelectric polymer materials of electrically conductive and insulating polymers with inorganic, metal, and carbon nanoparticles and the mixture of them. It is also discussed the effectiveness of the different strategies for enhancing the thermoelectric efficiency of these nanostructured materials. A perspective about the implementation of new approaches for the accelerated discovery (e.g., inverse design) of more efficient nanostructured thermoelectric polymer materials is also given. Finally, are presented some thermal waste energy applications (i.e., thermoelectrical generators).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Slack G (1995) New materials and performance limits for thermoelectric cooling. In: Rowe DM (ed) CRC handbook of thermoelectrics. CRC Press, Boca Raton, pp 407–440

    Google Scholar 

  2. Zhang Q, Sun Y, Xu W, Zhu D (2014) Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently. Adv Mater 26:6829–6851

    Article  CAS  Google Scholar 

  3. Wang L, Wang L, Yao Q, Bi H, Huang F, Wang Q, Chen L (2014) Large thermoelectric power factor in polyaniline/graphene nanocomposite films prepared by solution-assistant dispersing method. J Mater Chem A 2:11107

    Article  CAS  Google Scholar 

  4. Aghelinejad M, Zhang Y, Leung SN (2019) Processing parameters to enhance the electrical conductivity and thermoelectric power factor of polypyrrole/multi-walled carbon nanotubes nanocomposites. Synth Met 247:59–66

    Article  CAS  Google Scholar 

  5. Lee W, Kang YH, Lee JY, Jang K-S, Cho SY (2016) Improving the thermoelectric power factor of CNT/PEDOT:PSS nanocomposite films by ethylene glycol treatment. RSC Adv 6:53339–53344

    Article  CAS  Google Scholar 

  6. Hong CT, Lee W, Kang YH, Yoo Y, Ryu J, Cho SY, Jang K-S (2015) Effective doping by spin-coating and enhanced thermoelectric power factors in SWCNT/P3HT hybrid films. J Mater Chem A 3:12314–12319

    Article  CAS  Google Scholar 

  7. Culebras M, Gómez C, Cantarero A (2014) Review on polymers for thermoelectric applications. Materials (Basel) 7:6701–6732

    Article  Google Scholar 

  8. Martin J, Tritt T, Uher C (2010) High temperature Seebeck coefficient metrology. J Appl Phys 108:121101

    Article  CAS  Google Scholar 

  9. Byeon D, Sobota R, Delime-Codrin K, Choi S, Hirata K, Adachi M, Kiyama M, Matsuura T, Yamamoto Y, Matsunami M, Takeuchi T (2019) Discovery of colossal Seebeck effect in metallic Cu2Se. Nat Commun 10:72

    Article  CAS  Google Scholar 

  10. Chetto M, Queudet A (2016) Harnessing ambient energy for embedded systems. In: Energy autonomy of real-time systems. Elsevier, London, pp 57–83

    Google Scholar 

  11. “Production of electrical power”. (1982) In: The efficient use of energy. Elsevier, London, UK, pp 286–308. https://doi.org/10.1016/B978-0-408-01250-8.50022-2

  12. Masuda K, Uchida K, Iguchi R, Miura Y (2019) First-principles study of the anisotropic magneto-Peltier effect. Phys Rev B 99:104406

    Article  CAS  Google Scholar 

  13. Uchida K, Daimon S, Iguchi R, Saitoh E (2018) Observation of anisotropic magneto-Peltier effect in nickel. Nature 558:95–99

    Article  CAS  Google Scholar 

  14. Heaney MB (2003) Electrical conductivity and resistivity. In: Webster JG (ed) Electrical measurement, signal processing, and displays. CRC Press, Boca Raton, pp 7–1

    Google Scholar 

  15. Rossiter PL (1987) The electrical resistivity of metals and alloys. Cambridge University Press, Cambridge, MA

    Book  Google Scholar 

  16. Quinn JJ, Yi K-S (2018) Solid state physics. Springer, Berlin, Heidelberg

    Google Scholar 

  17. Mizutani U (2001) Introduction to the electron theory of metals. Cambridge University Press, New York

    Book  Google Scholar 

  18. Zhang Y, Heo Y-J, Park M, Park S-J (2019) Recent advances in organic thermoelectric materials: principle mechanisms and emerging carbon-based green energy materials. Polymers (Basel) 11:167

    Article  CAS  Google Scholar 

  19. Tritt TM (2004) Thermal conductivity theory, properties, and applications. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  20. Goupil C, Seifert W, Zabrocki K, Müller E, Snyder GJ (2011) Thermodynamics of thermoelectric phenomena and applications. Entropy 13:1481–1517

    Article  Google Scholar 

  21. Kroon R, Mengistie DA, Kiefer D, Hynynen J, Ryan JD, Yu L, Müller C (2016) Thermoelectric plastics: from design to synthesis, processing and structure–property relationships. Chem Soc Rev 45:6147–6164

    Article  CAS  Google Scholar 

  22. Kaneko H, Ishiguro T, Takahashi A, Tsukamoto J (1993) Magnetoresistance and thermoelectric power studies of metal-nonmetal transition in iodine-doped polyacetylene. Synth Met 57:4900–4905

    Article  CAS  Google Scholar 

  23. Yoon CO, Reghu M, Moses D, Cao Y, Heeger AJ (1995) Transports in blends of conducting polymers. Synth Met 69:255–258

    Article  CAS  Google Scholar 

  24. Kemp NT, Kaiser AB, Liu C-J, Chapman B, Mercier O, Carr AM, Trodahl HJ, Buckley RG, Partridge AC, Lee JY, Kim CY, Bartl A, Dunsch L, Smith WT, Shapiro JS (1999) Thermoelectric power and conductivity of different types of polypyrrole. J Polym Sci Part B Polym Phys 37:953–960

    Article  CAS  Google Scholar 

  25. Aïch RB, Blouin N, Bouchard A, Leclerc M (2009) Electrical and thermoelectric properties of poly(2,7-Carbazole) derivatives. Chem Mater 21:751–757

    Article  CAS  Google Scholar 

  26. Kim G-H, Shao L, Zhang K, Pipe KP (2013) Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat Mater 12:719–723

    Article  CAS  Google Scholar 

  27. Zhang B, Sun J, Katz HE, Fang F, Opila RL (2010) Promising thermoelectric properties of commercial PEDOT:PSS materials and their Bi2Te3 powder composites. ACS Appl Mater Interfaces 2:3170–3178

    Article  CAS  Google Scholar 

  28. See KC, Feser JP, Chen CE, Majumdar A, Urban JJ, Segalman RA (2010) Water-processable polymer−nanocrystal hybrids for thermoelectrics. Nano Lett 10:4664–4667

    Article  CAS  Google Scholar 

  29. Song H, Cai K (2017) Preparation and properties of PEDOT:PSS/Te nanorod composite films for flexible thermoelectric power generator. Energy 125:519–525

    Article  CAS  Google Scholar 

  30. Du Y et al (2012) Influence of sintering temperature on thermoelectric properties of Bi2Te3/Polythiophene composite materials. J Mater Sci Mater Electron 23:870–876

    Article  CAS  Google Scholar 

  31. Zhang T, Li K, Li C, Ma S, Hng HH, Wei L (2017) Mechanically durable and flexible thermoelectric films from PEDOT:PSS/PVA/Bi 0.5 Sb 1.5 Te 3 nanocomposites. Adv Electron Mater 3:1600554

    Article  CAS  Google Scholar 

  32. Xiong J, Wang L, Xu J, Liu C, Zhou W, Shi H, Jiang Q, Jiang F (2016) Thermoelectric performance of PEDOT:PSS/Bi2Te3-nanowires: a comparison of hybrid types. J Mater Sci Mater Electron 27:1769–1776

    Article  CAS  Google Scholar 

  33. Toshima N, Imai M, Ichikawa S (2011) Organic–inorganic nanohybrids as novel thermoelectric materials: hybrids of polyaniline and bismuth(III) telluride nanoparticles. J Electron Mater 40:898–902

    Article  CAS  Google Scholar 

  34. Kato K, Hagino H, Miyazaki K (2013) Fabrication of bismuth telluride thermoelectric films containing conductive polymers using a printing method. J Electron Mater 42:1313–1318

    Article  CAS  Google Scholar 

  35. Du Y, Cai KF, Chen S, Cizek P, Lin T (2014) Facile preparation and thermoelectric properties of Bi2Te3 based alloy nanosheet/PEDOT:PSS composite films. ACS Appl Mater Interfaces 6:5735–5743

    Article  CAS  Google Scholar 

  36. Ju H, Kim J (2016) Chemically exfoliated SnSe nanosheets and their SnSe/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) composite films for polymer based thermoelectric applications. ACS Nano 10:5730–5739

    Article  CAS  Google Scholar 

  37. Ju H, Kim J (2016) Fabrication of conductive polymer/inorganic nanoparticles composite films: PEDOT:PSS with exfoliated tin selenide nanosheets for polymer-based thermoelectric devices. Chem Eng J 297:66–73

    Article  CAS  Google Scholar 

  38. Du Y, Xu J, Paul B, Eklund P (2018) Flexible thermoelectric materials and devices. Appl Mater Today 12:366–388

    Article  Google Scholar 

  39. Zhou C, Dun C, Wang Q, Wang K, Shi Z, Carroll DL, Liu G, Qiao G (2015) Nanowires as building blocks to fabricate flexible thermoelectric fabric: the case of copper telluride nanowires. ACS Appl Mater Interfaces 7:21015–21020

    Article  CAS  Google Scholar 

  40. McGrail BT, Sehirlioglu A, Pentzer E (2015) Polymer composites for thermoelectric applications. Angew Chemie Int Ed 54:1710–1723

    Article  CAS  Google Scholar 

  41. Toshima N, Jiravanichanun N, Marutani H (2012) Organic thermoelectric materials composed of conducting polymers and metal nanoparticles. J Electron Mater 41:1735–1742

    Article  CAS  Google Scholar 

  42. Yoshida A, Toshima N (2014) Gold nanoparticle and gold nanorod embedded PEDOT:PSS thin films as organic thermoelectric materials. J Electron Mater 43:1492–1497

    Article  CAS  Google Scholar 

  43. Yoshida A, Toshima N (2016) Thermoelectric properties of hybrid thin films of PEDOT-PSS and silver nanowires. J Electron Mater 45:2914–2919

    Article  CAS  Google Scholar 

  44. Toshima N, Jiravanichanun N (2013) Improvement of thermoelectric properties of PEDOT/PSS films by addition of gold nanoparticles: enhancement of seebeck coefficient. J Electron Mater 42:1882–1887

    Article  CAS  Google Scholar 

  45. Coates NE, Yee SK, McCulloch B, See KC, Majumdar A, Segalman RA, Urban JJ (2013) Effect of interfacial properties on polymer-nanocrystal thermoelectric transport. Adv Mater 25:1629–1633

    Article  CAS  Google Scholar 

  46. Xiong J, Jiang F, Shi H, Xu J, Liu C, Zhou W, Jiang Q, Zhu Z, Hu Y (2015) Liquid exfoliated graphene as dopant for improving the thermoelectric power factor of conductive PEDOT:PSS nanofilm with hydrazine treatment. ACS Appl Mater Interfaces 7:14917–14925

    Article  CAS  Google Scholar 

  47. Yoo D, Kim J, Lee SH, Cho W, Choi HH, Kim FS, Kim JH (2015) Effects of one- and two-dimensional carbon hybridization of PEDOT:PSS on the power factor of polymer thermoelectric energy conversion devices. J Mater Chem A 3:6526–6533

    Article  CAS  Google Scholar 

  48. Liang L, Gao C, Chen G, Guo C-Y (2016) Large-area, stretchable, super flexible and mechanically stable thermoelectric films of polymer/carbon nanotube composites. J Mater Chem C 4:526–532

    Article  CAS  Google Scholar 

  49. Wang L, Yao Q, Xiao J, Zeng K, Qu S, Shi W, Wang Q, Chen L (2016) Engineered molecular chain ordering in single-walled carbon nanotubes/polyaniline composite films for high-performance organic thermoelectric materials. Chem - An Asian J 11:1804–1810

    Article  CAS  Google Scholar 

  50. An CJ, Lee YC, Kang YH, Cho SY (2017) Improved interaction between semiconducting polymer and carbon nanotubes in thermoelectric composites through covalent grafting. Carbon 124:662–668

    Article  CAS  Google Scholar 

  51. Hsu J-H, Choi W, Yang G, Yu C (2017) Origin of unusual thermoelectric transport behaviors in carbon nanotube filled polymer composites after solvent/acid treatments. Org Electron 45:182–189

    Article  CAS  Google Scholar 

  52. Song H, Qiu Y, Wang Y, Cai K, Li D, Deng Y, He J (2017) Polymer/carbon nanotube composite materials for flexible thermoelectric power generator. Compos Sci Technol 153:71–83

    Article  CAS  Google Scholar 

  53. Fan W, Guo C-Y, Chen G (2018) Flexible films of poly(3,4 ethylenedioxythiophene) / carbon nanotube thermoelectric composites prepared by dynamic 3-phase interfacial electropolymerization and subsequent physical mixing. J Mater Chem A 6:12275–12280

    Article  CAS  Google Scholar 

  54. Mitra M et al (2015) Reduced graphene oxide-polyaniline composites—synthesis, characterization and optimization for thermoelectric applications. RSC Adv 5:31039–31048

    Article  CAS  Google Scholar 

  55. Wang Y et al (2017) Polypyrrole/graphene/polyaniline ternary nanocomposite with high thermoelectric power factor. ACS Appl Mater Interfaces 9:20124–20131

    Article  CAS  Google Scholar 

  56. Sun X, Wei Y, Li J, Zhao J, Zhao L, Li Q (2017) Ultralight conducting PEDOT:PSS/carbon nanotube aerogels doped with silver for thermoelectric materials. Sci China Mater 60:159–166

    Article  CAS  Google Scholar 

  57. Erden F, Li H, Wang X, Wang F, He C (2018) High-performance thermoelectric materials based on ternary TiO 2 /CNT/PANI composites. Phys Chem Chem Phys 20:9411–9418

    Article  CAS  Google Scholar 

  58. Suemori K, Watanabe Y, Hoshino S (2015) Carbon nanotube bundles/polystyrene composites as high-performance flexible thermoelectric materials. Appl Phys Lett 106:113902

    Article  CAS  Google Scholar 

  59. Prabhakar R et al (2019) Tunneling-limited thermoelectric transport in carbon nanotube networks embedded in poly(dimethylsiloxane) elastomer. ACS Appl Energy Mater 2:2419–2426

    Article  CAS  Google Scholar 

  60. Oshima K, Inoue J, Sadakata S, Shiraishi Y, Toshima N (2017) Hybrid-type organic thermoelectric materials containing nanoparticles as a carrier transport promoter. J Electron Mater 46:3207–3214

    Article  CAS  Google Scholar 

  61. Krause B, Barbier C, Levente J, Klaus M, Pötschke P (2019) Screening of different carbon nanotubes in melt-mixed polymer composites with different polymer matrices for their thermoelectrical properties. J Compos Sci 3:106

    Article  CAS  Google Scholar 

  62. Aghelinejad M, Leung SN (2017) Enhancement of thermoelectric conversion efficiency of polymer/carbon nanotube nanocomposites through foaming-induced microstructuring. J Appl Polym Sci 134:45073

    Article  CAS  Google Scholar 

  63. Ha JU, Cho J, Yoon S, Jang MS, Hassan SZ, Kang MG, Chung DS (2019) Polyvinyl alcohol covalently grafted CNT for free-standing, flexible, and high-performance thermoelectric generator film. Nanotechnology 30:14LT01

    Article  CAS  Google Scholar 

  64. Sun Y-C, Terakita D, Tseng AC, Naguib HE (2015) Study on the thermoelectric properties of PVDF/MWCNT and PVDF/GNP composite foam. Smart Mater Struct 24:085034

    Article  CAS  Google Scholar 

  65. Kim J, Kwon OH, Kang YH, Jang K-S, Cho SY, Yoo Y (2017) A facile preparation route of n-type carbon buckypaper and its enhanced thermoelectric performance. Compos Sci Technol 153:32–39

    Article  CAS  Google Scholar 

  66. Aghelinejad M, Leung S (2018) Thermoelectric nanocomposite foams using non-conducting polymers with hybrid 1D and 2D nanofillers. Materials 11:1757

    Article  CAS  Google Scholar 

  67. Dey A, Panja S, Sikder AK, Chattopadhyay S (2015) One pot green synthesis of graphene–iron oxide nanocomposite (GINC): an efficient material for enhancement of thermoelectric performance. RSC Adv 5:10358–10364

    Article  CAS  Google Scholar 

  68. Oshima K, Sadakata S, Asano H, Shiraishi Y, Toshima N (2017) Thermostability of hybrid thermoelectric materials consisting of poly(Ni-ethenetetrathiolate), polyimide and carbon nanotubes. Materials 10:824

    Article  CAS  Google Scholar 

  69. El-Shamy AG (2019) Novel hybrid nanocomposite based on poly(vinyl alcohol)/carbon quantum dots/fullerene (PVA/CQDs/C60) for thermoelectric power applications. Compos Part B Eng 174:106993

    Article  CAS  Google Scholar 

  70. Lan X, Liu C, Wang T, Hou J, Xu J, Tan R, Nie G, Jiang F (2019) Effect of functional groups on the thermoelectric performance of carbon nanotubes. J Electron Mater 48:6978–6984

    Article  CAS  Google Scholar 

  71. Stevens DL, Gamage GA, Ren Z, Grunlan JC (2020) Salt doping to improve thermoelectric power factor of organic nanocomposite thin films. RSC Adv 10:11800–11807

    Article  CAS  Google Scholar 

  72. Zunger A (2018) Inverse design in search of materials with target functionalities. Nat Rev Chem 2:0121

    Article  CAS  Google Scholar 

  73. Wang T, Zhang C, Snoussi H, Zhang G (2020) Machine learning approaches for thermoelectric materials research. Adv Funct Mater 30:1–14

    Google Scholar 

  74. Franceschetti A, Zunger A (1999) The inverse band-structure problem of finding an atomic configuration with given electronic properties. Nature 402:60–63

    Article  CAS  Google Scholar 

  75. Balachandran PV, Theiler J, Rondinelli JM, Lookman T (2015) Materials prediction via classification learning. Sci Rep 5:1–16

    Article  CAS  Google Scholar 

  76. Rajan K (2015) Materials informatics: the materials “gene” and big data. Annu Rev Mater Res 45:153–169

    Article  CAS  Google Scholar 

  77. Gaultois MW et al (2016) Perspective: web-based machine learning models for real-time screening of thermoelectric materials properties. APL Mater 4:53213

    Article  CAS  Google Scholar 

  78. Furmanchuk A et al (2018) Prediction of seebeck coefficient for compounds without restriction to fixed stoichiometry: a machine learning approach. J Comput Chem 39:191–202

    Article  CAS  Google Scholar 

  79. Urban JJ, Menon AK, Tian Z, Jain A, Hippalgaonkar K (2019) New horizons in thermoelectric materials: correlated electrons, organic transport, machine learning, and more. J Appl Phys 125:180902

    Article  CAS  Google Scholar 

  80. Madsen GKH (2006) Automated search for new thermoelectric materials: the case of LiZnSb. J Am Chem Soc 128:12140–12146

    Article  CAS  Google Scholar 

  81. Aydemir U et al (2016) YCuTe 2 : a member of a new class of thermoelectric materials with CuTe 4 -based layered structure. J Mater Chem A 4:2461–2472

    Article  CAS  Google Scholar 

  82. Zhu H et al (2019) Discovery of TaFeSb-based half-Heuslers with high thermoelectric performance. Nat Commun 10:1–8

    Article  CAS  Google Scholar 

  83. Tagade PM et al (2019) Attribute driven inverse materials design using deep learning Bayesian framework. npj Comput Mater 5:127

    Article  Google Scholar 

  84. Enescu D (2019) Thermoelectric energy harvesting: basic principles and applications. In: Green energy advances. IntechOpen, London

    Google Scholar 

  85. Jansch D, Kohne M, Klein M, Numus J (2016) Thermoelectric: power from waste heat, BINE-Themeninfo, BINE Information Service, Bonn

    Google Scholar 

  86. Ando Junior OH, Maran ALO, Henao NC (2018) A review of the development and applications of thermoelectric microgenerators for energy harvesting. Renew Sust Energ Rev 91:376–393

    Article  Google Scholar 

  87. Yu S, Du Q, Diao H, Shu G, Jiao K (2015) Start-up modes of thermoelectric generator based on vehicle exhaust waste heat recovery. Appl Energy 138:276–290

    Article  Google Scholar 

  88. Champier D (2017) Thermoelectric generators: a review of applications. Energy Convers Manag 140:167–181

    Article  Google Scholar 

  89. Barma MC, Riaz M, Saidur R, Long BD (2015) Estimation of thermoelectric power generation by recovering waste heat from biomass fired thermal oil heater. Energy Convers Manag 98:303–313

    Article  CAS  Google Scholar 

  90. Aranguren P, Astrain D, Rodríguez A, Martínez A (2015) Experimental investigation of the applicability of a thermoelectric generator to recover waste heat from a combustion chamber. Appl Energy 152:121–130

    Article  Google Scholar 

  91. Moser W, Friedl G, Haslinger W, Hofbauer H (2006) Small-scale pellet boiler with thermoelectric generator. In: 2006 25th international conference on thermoelectrics. IEEE, pp 349–353. https://doi.org/10.1109/ICT.2006.331221

  92. Thomson H, Liddell C (2015) The suitability of wood pellet heating for domestic households: a review of literature. Renew Sust Energ Rev 42:1362–1369

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to José M. Mata-Padilla or Carlos A. Ávila-Orta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mata-Padilla, J.M., Ávila-Orta, C.A., Cruz-Delgado, V.J., Martínez-Colunga, J.G. (2020). Nanostructured Polymers for Thermoelectric Conversion. In: Kharissova, O.V., Martínez, L.M.T., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-11155-7_147-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11155-7_147-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11155-7

  • Online ISBN: 978-3-030-11155-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics