Skip to main content

Nanostructured Heterogeneous Catalysts for Biomass Conversion in Green Solvents

  • Living reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

Currently, several industries worldwide rely on non-renewable resources, which meet about 90% of their energy need. As this is not sustainable in the long term, search for new sources of energy are of great interest and importance in the present scenario. In this regard, catalytic conversion of biomass to value added products is gaining a lot of momentum. Lignocellulosic biomass from plants is a key source for the formation value-added chemicals and biofuels. Cellulose comprises of 40–50% of D-glucose, lignin contains 15–20% of organic polymers of phenols, and hemicellulose is a heterogeneous polymer comprising 25–35% of pentose and hexoses. Lignin is a largest inexhaustible source of aromatic building blocks on the earth and can serve as a starting material for the synthesis of functionalized aromatic compounds to offer suitable alternatives to the universally used, petroleum-derived BTX (benzene, toluene, and xylene). In addition, conversion of glucose and cellulose into various value-added chemicals and fuels, such as various alcohols, gluconic acid, 5-hydroxymethylfurfural (HMF), lactic acid and pentanoic acid esters, and the conversion of hemicellulose into value-added chemicals, like furfural, furfuryl alcohol and levulinic acid has been studied extensively in recent years. In this chapter, the basic concepts of lignocellulosic conversion into useful chemicals in environment-friendly Green solvents and the recent advancements in the development of nanostructured heterogeneous catalysts have been reviewed. Subsequently, an outlook into the future perspectives is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ahmed Z (2001) Production of natural and rare pentoses using microorganisms and their enzymes. Electron J Biotechnol 4:13–14

    Article  Google Scholar 

  2. Akash B (2015) Thermochemical depolymerization of biomass. Procedia Comp Sci 52:827–834

    Article  Google Scholar 

  3. Anastas PT, Kirchhoff MM, Williamson TC (2001) Catalysis as a foundational pillar of green chemistry. Appl Catal A Gen 221:3–13

    Article  CAS  Google Scholar 

  4. Bahuguna A, Kumar A, Chhabra T et al (2018) Potassium-functionalized graphitic carbon nitride supported on reduced graphene oxide as a sustainable catalyst for knoevenagel condensation. ACS Appl Nano Mater 1:6711–6723

    Article  CAS  Google Scholar 

  5. Bhaumik P, Chou H-J, Lee L-C et al (2018) Chemical transformation for 5-hydroxymethylfurfural production from saccharides using molten salt system. ACS Sustain Chem Eng 6:5712–5717

    Article  CAS  Google Scholar 

  6. Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates – the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554

    Article  CAS  Google Scholar 

  7. Calvo-Flores FG, Dobado JA (2010) Lignin as renewable raw material. ChemSusChem 3:1227–1235

    Article  CAS  Google Scholar 

  8. Chakar FS, Ragauskas AJ (2004) Review of current and future softwood kraft lignin process chemistry. Ind Crop Prod 20:131–141

    Article  CAS  Google Scholar 

  9. Chhabra T, Bahuguna A, Dhankhar SS et al (2019) Sulfonated graphitic carbon nitride as a highly selective and efficient heterogeneous catalyst for the conversion of biomass-derived saccharides to 5-hydroxymethylfurfural in green solvents. Green Chem 21:6012–6026

    Article  CAS  Google Scholar 

  10. Chhabra T, Kumar A, Bahuguna A et al (2019) Reduced graphene oxide supported MnO2 nanorods as recyclable and efficient adsorptive photocatalysts for pollutants removal. Vacuum 160:333–346

    Article  CAS  Google Scholar 

  11. Choudhary V, Pinar AB, Sandler SI et al (2011) Xylose isomerization to xylulose and its dehydration to furfural in aqueous media. ACS Catal 1:1724–1728

    Article  CAS  Google Scholar 

  12. Damodar D, Kunamalla A, Varkolu M et al (2019) Near-room-temperature synthesis of sulfonated carbon nanoplates and their catalytic application. ACS Sustain Chem Eng 7:12707–12717

    Article  CAS  Google Scholar 

  13. Deng W, Zhang H, Wu X et al (2015) Oxidative conversion of lignin and lignin model compounds catalyzed by CeO2-supported Pd nanoparticles. Green Chem 17:5009–5018

    Article  CAS  Google Scholar 

  14. Deuss PJ, Barta K (2016) From models to lignin: transition metal catalysis for selective bond cleavage reactions. Coord Chem Rev 306:510–532

    Article  CAS  Google Scholar 

  15. Dhar P, Vinu R (2018) Microwave-assisted catalytic solvolysis of lignin to phenols: kinetics and product characterization. ACS Omega 3:15076–15085

    Article  CAS  Google Scholar 

  16. Enache DI, Edwards JK, Landon P et al (2006) Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science 311:362–365

    Article  CAS  Google Scholar 

  17. Hara M, Nakajima K, Kamata K (2015) Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals. Sci Technol Adv Mater 16:034903

    Article  CAS  Google Scholar 

  18. He Y, Itta AK, Alwakwak A-A et al (2018) Aminosilane-grafted SiO2–ZrO2 polymer hollow Fibers as bifunctional microfluidic reactor for tandem reaction of glucose and fructose to 5-hydroxymethylfurfural. ACS Sustain Chem Eng 6:17211–17219

    Article  CAS  Google Scholar 

  19. Hernández-Beltrán JU, Lira H-D, Omar I et al (2019) Insight into pretreatment methods of lignocellulosic biomass to increase biogas yield: current state, challenges, and opportunities. Appl Sci 9:3721

    Article  CAS  Google Scholar 

  20. Hommes A, Heeres HJ, Yue J (2019) Catalytic transformation of biomass derivatives to value-added chemicals and fuels in continuous flow microreactors. ChemCatChem 11:4671–4708

    Article  CAS  Google Scholar 

  21. Hu B, Deng W, Li R et al (2014) Carbon-supported palladium catalysts for the direct synthesis of hydrogen peroxide from hydrogen and oxygen. J Catal 319:15–26

    Article  CAS  Google Scholar 

  22. Iglesias J, Melero JA, Morales G et al (2016) Dehydration of xylose to furfural in alcohol media in the presence of solid acid catalysts. ChemCatChem 8:2089–2099

    Article  CAS  Google Scholar 

  23. Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6:4497–4559

    Article  CAS  Google Scholar 

  24. Jae J, Tompsett GA, Lin Y-C et al (2010) Depolymerization of lignocellulosic biomass to fuel precursors: maximizing carbon efficiency by combining hydrolysis with pyrolysis. Energy Environ Sci 3:358–365

    Google Scholar 

  25. Jing Y, Guo Y, Xia Q et al (2019) Catalytic production of value-added chemicals and liquid fuels from lignocellulosic biomass. Chem 5:2520–2546

    Google Scholar 

  26. Kobayashi H, Yabushita M, Komanoya T et al (2013) High-yielding one-pot synthesis of glucose from cellulose using simple activated carbons and trace hydrochloric acid. ACS Catal 3:581–587

    Article  CAS  Google Scholar 

  27. Lam E, Majid E, Leung AC et al (2011) Synthesis of furfural from xylose by heterogeneous and reusable nafion catalysts. ChemSusChem 4:535–541

    Article  CAS  Google Scholar 

  28. Lanzafame P, Temi D, Perathoner S et al (2012) Direct conversion of cellulose to glucose and valuable intermediates in mild reaction conditions over solid acid catalysts. Catal Today 179:178–184

    Article  CAS  Google Scholar 

  29. Li Z, Su K, Ren J et al (2018) Direct catalytic conversion of glucose and cellulose. Green Chem 20:863–872

    Article  CAS  Google Scholar 

  30. Lin Y-C, Huber GW (2009) The critical role of heterogeneous catalysis in lignocellulosic biomass conversion. Energy Environ Sci 2:68–80

    Article  CAS  Google Scholar 

  31. Liu B, Zhang Z (2016) Catalytic conversion of biomass into chemicals and fuels over magnetic catalysts. ACS Catal 6:326–338

    Article  CAS  Google Scholar 

  32. Liu R, Chen J, Huang X et al (2013) Conversion of fructose into 5-hydroxymethylfurfural and alkyl levulinates catalyzed by sulfonic acid-functionalized carbon materials. Green Chem 15:2895–2903

    Article  CAS  Google Scholar 

  33. Liu W-J, Li W-W, Jiang H et al (2017) Fates of chemical elements in biomass during its pyrolysis. Chem Rev 117:6367–6398

    Article  CAS  Google Scholar 

  34. Marcotullio G, De Jong W (2010) Chloride ions enhance furfural formation from D-xylose in dilute aqueous acidic solutions. Green Chem 12:1739–1746

    Article  CAS  Google Scholar 

  35. Marianou AA, Michailof CM, Ipsakis DK et al (2018) Isomerization of glucose into fructose over natural and synthetic MgO catalysts. ACS Sustain Chem Eng 6:16459–16470

    Article  CAS  Google Scholar 

  36. Menges N (2018) The role of green solvents and catalysts at the future of drug design and of synthesis. In: Green chemistry, IntechOpen

    Google Scholar 

  37. Peela NR, Yedla SK, Velaga B et al (2019) Choline chloride functionalized zeolites for the conversion of biomass derivatives to 5-hydroxymethylfurfural. Appl Catal A Gen 580:59–70

    Article  CAS  Google Scholar 

  38. Qi X, Guo H, Li L et al (2012) Acid-catalyzed dehydration of fructose into 5-hydroxymethylfurfural by cellulose-derived amorphous carbon. ChemSusChem 5:2215–2220

    Article  CAS  Google Scholar 

  39. Qu T, Zhang X, Gu X et al (2017) Ball milling for biomass fractionation and pretreatment with aqueous hydroxide solutions. ACS Sustain Chem Eng 5:7733–7742

    Article  CAS  Google Scholar 

  40. Rabee AI, Le SD, Nishimura S (2020) MgO-ZrO2 mixed oxides as effective and reusable base catalysts for glucose isomerization into fructose in aqueous media. Chem Asian J 15:294–300

    Article  CAS  Google Scholar 

  41. Saravanan K, Park KS, Jeon S et al (2018) Aqueous phase synthesis of 5-hydroxymethylfurfural from glucose over large pore mesoporous zirconium phosphates: effect of calcination temperature. ACS Omega 3:808–820

    Article  CAS  Google Scholar 

  42. Sener C, Motagamwala AH, Alonso DM et al (2018) Enhanced furfural yields from xylose dehydration in the γ-Valerolactone/water solvent system at elevated temperatures. ChemSusChem 11:2321–2331

    Article  CAS  Google Scholar 

  43. Tursi A (2019) A review on biomass: importance, chemistry, classification, and conversion. Biofuel Res J 6:962–979

    Article  CAS  Google Scholar 

  44. West RM, Liu ZY, Peter M et al (2008) Liquid alkanes with targeted molecular weights from biomass-derived carbohydrates. ChemSusChem 1:417–424

    Article  CAS  Google Scholar 

  45. Yang Y, Hu CW, Abu-Omar MM (2012) Synthesis of furfural from xylose, xylan, and biomass using AlCl3· 6H2O in biphasic media via xylose isomerization to xylulose. ChemSusChem 5:405–410

    Article  CAS  Google Scholar 

  46. Zakzeski J, Bruijnincx PC, Jongerius AL et al (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599

    Article  CAS  Google Scholar 

  47. Zhang J, Choi YS, Yoo CG et al (2015) Cellulose–hemicellulose and cellulose–lignin interactions during fast pyrolysis. ACS Sustain Chem Eng 3:293–301

    Article  CAS  Google Scholar 

  48. Zhang X, Yang W, Blasiak W (2011) Modeling study of woody biomass: interactions of cellulose, hemicellulose, and lignin. Energy Fuel 25:4786–4795

    Article  CAS  Google Scholar 

  49. Zhu Y, Li W, Lu Y et al (2017) Production of furfural from xylose and corn Stover catalyzed by a novel porous carbon solid acid in γ-valerolactone. RSC Adv 7:29916–29924

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkata Krishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chhabra, T., Krishnan, V. (2020). Nanostructured Heterogeneous Catalysts for Biomass Conversion in Green Solvents. In: Kharissova, O.V., Martínez, L.M.T., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-11155-7_115-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11155-7_115-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11155-7

  • Online ISBN: 978-3-030-11155-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics