Skip to main content

Advances in Human Stem Cell-Derived Neuronal Cell Culturing and Analysis

  • Chapter
  • First Online:
In Vitro Neuronal Networks

Abstract

This chapter provides an overview of the current stage of human in vitro functional neuronal cultures, their biological application areas, and modalities to analyze their behavior. During the last 10 years, this research area has changed from being practically non-existent to one that is facing high expectations. Here, we present a case study as a comprehensive short history of this process based on extensive studies conducted at NeuroGroup (University of Tampere) and Computational Biophysics and Imaging Group (Tampere University of Technology), ranging from the differentiation and culturing of human pluripotent stem cell (hPSC)-derived neuronal networks to their electrophysiological analysis. After an introduction to neuronal differentiation in hPSCs, we review our work on their functionality and approaches for extending cultures from 2D to 3D systems. Thereafter, we discuss our target applications in neuronal developmental modeling, toxicology, drug screening, and disease modeling. The development of signal analysis methods was required due to the unique functional and developmental properties of hPSC-derived neuronal cells and networks, which separate them from their much-used rodent counterparts. Accordingly, a line of microelectrode array (MEA) signal analysis methods was developed. This work included the development of action potential spike detection methods, entropy-based methods and additional methods for burst detection and quantification, joint analysis of spikes and bursts to analyze the spike waveform compositions of bursts, assessment methods for network synchronization, and computational simulations of synapses and neuronal networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Athauda, D., & Foltynie, T. (2015). The ongoing pursuit of neuroprotective therapies in Parkinson disease. Nature Reviews. Neurology, 11(1), 25–40.

    Article  CAS  PubMed  Google Scholar 

  • Avior, Y., Sagi, I., & Benvenisty, N. (2016). Pluripotent stem cells in disease modelling and drug discovery. Nature Reviews. Molecular Cell Biology, 17(3), 170–182.

    Article  CAS  PubMed  Google Scholar 

  • Bal-Price, A. K., Hogberg, H. T., Buzanska, L., Lenas, P., van Vliet, E., & Hartung, T. (2010). In vitro developmental neurotoxicity (DNT) testing: Relevant models and endpoints. Neurotoxicology, 31(5), 545–554. https://doi.org/10.1016/j.neuro.2009.11.006

    Article  CAS  PubMed  Google Scholar 

  • Brafman, D. A., Moya, N., Allen-Soltero, S., Fellner, T., Robinson, M., McMillen, Z. L., et al. (2013). Analysis of SOX2-expressing cell populations derived from human pluripotent stem cells. Stem Cell Reports, 1(5), 464–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broccoli, V., Giannelli, S. G., & Mazzara, P. G. (2014). Modeling physiological and pathological human neurogenesis in the dish. Frontiers in Neuroscience, 8, 183.

    Article  PubMed  PubMed Central  Google Scholar 

  • Broguiere, N., Isenmann, L., & Zenobi-Wong, M. (2016). Novel enzymatically cross-linked hyaluronan hydrogels support the formation of 3D neuronal networks. Biomaterials, 99, 47–55.

    Article  CAS  PubMed  Google Scholar 

  • Burggren, W. W., & Monticino, M. G. (2005). Assessing physiological complexity. The Journal of Experimental Biology, 208, 3221–3232.

    Article  CAS  PubMed  Google Scholar 

  • Busskamp, V., Lewis, N. E., Guye, P., Ng, A. H. M., Shipman, S. L., Byrne, S. M., et al. (2014). Rapid neurogenesis through transcriptional activation in human stem cells. Molecular Systems Biology, 10, 760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canals, I., Soriano, J., Orlandi, J. G., Torrent, R., Richaud-Patin, Y., Jiménez-Delgado, S., et al. (2015). Activity and high-order effective connectivity alterations in sanfilippo C patient-specific neuronal networks. Stem Cell Reports, 5(4), 546–557.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carpenter, M. K., Inokuma, M. S., Denham, J., Mujtaba, T., Chiu, C.-P., & Rao, M. S. (2001). Enrichment of neurons and neural precursors from human embryonic stem cells. Experimental Neurology, 172(2), 383–397.

    Article  CAS  PubMed  Google Scholar 

  • Chambers, S. M., Fasano, C. A., Papapetrou, E. P., Tomishima, M., Sadelain, M., & Studer, L. (2009). Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature Biotechnology, 27(3), 275–280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, L., Deng, Y., Luo, W., Wang, Z., & Zeng, S. (2009). Detection of bursts in neuronal spike trains by the mean inter-spike interval method. Progress in Natural Science, 19(2), 229–235.

    Article  Google Scholar 

  • Chiappalone, M., Novellino, A., Vajda, I., Vato, A., Martinoia, S., & van Pelt, J. (2005). Burst detection algorithms for the analysis of spatio-temporal patterns in cortical networks of neurons. Neurocomputing, 65–66, 653–662.

    Article  Google Scholar 

  • Christodoulou, C., & Bugmann, G. (2001). Coefficient of variation vs. mean interspike interval curves: What do they tell us about the brain? Neurocomputing, 38-40, 1141–1149.

    Article  Google Scholar 

  • Cotterill, E., Charlesworth, P., Thomas, C. W., Paulsen, O., & Eglen, S. J. (2016). A comparison of computational methods for detecting bursts in neuronal spike trains and their application to human stem cell-derived neuronal networks. Journal of Neurophysiology, 116(2), 306–321.

    Article  PubMed  PubMed Central  Google Scholar 

  • Douvaras, P., Wang, J., Zimmer, M., Hanchuk, S., O’Bara, M. A., Sadiq, S., et al. (2014). Efficient generation of myelinating oligodendrocytes from primary progressive multiple sclerosis patients by induced pluripotent stem cells. Stem Cell Reports, 3(2), 250–259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar, J. M., Robinson, M., & Willerth, S. M. (2017). Fibrin hydrogels induce mixed dorsal/ventral spinal neuron identities during differentiation of human induced pluripotent stem cells. Acta Biomaterialia, 51, 237–245.

    Article  CAS  PubMed  Google Scholar 

  • Erceg, S., Ronaghi, M., & Stojković, M. (2009). Human embryonic stem cell differentiation toward regional specific neural precursors. Stem Cells, 27(1), 78–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falk, A., Koch, P., Kesavan, J., Takashima, Y., Ladewig, J., Alexander, M., et al. (2012). Capture of neuroepithelial-like stem cells from pluripotent stem cells provides a versatile system for in vitro production of human neurons. PLoS One, 7(1), e29597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frega, M., Tedesco, M., Massobrio, P., Pesce, M., & Martinoia, S. (2014). Network dynamics of 3D engineered neuronal cultures: A new experimental model for in-vitro electrophysiology. Scientific Reports, 4, 5489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frega, M., van Gestel, S. H. C., Linda, K., van der Raadt, J., Keller, J., Van Rhijn, J.-R., et al. (2017). Rapid neuronal differentiation of induced pluripotent stem cells for measuring network activity on micro-electrode arrays. Journal of Visualized Experiments, 119. https://doi.org/10.3791/54900

    Google Scholar 

  • Fritsche, E., Grandjean, P., Crofton, K. M., Aschner, M., Goldberg, A., Heinonen, T., et al. (2018). Consensus statement on the need for innovation, transition and implementation of developmental neurotoxicity (DNT) testing for regulatory purposes. Toxicology and Applied Pharmacology. https://doi.org/10.1016/j.taap.2018.02.004

  • Garofalo, M., Nieus, T., Massobrio, P., & Martinoia, S. (2009). Evaluation of the performance of information theory-based methods and cross-correlation to estimate the functional connectivity in cortical networks. PLoS One, 4(8), e 6482.

    Article  CAS  Google Scholar 

  • Goparaju, S. K., Kohda, K., Ibata, K., Soma, A., Nakatake, Y., Akiyama, T., et al. (2017). Rapid differentiation of human pluripotent stem cells into functional neurons by mRNAs encoding transcription factors. Scientific Reports, 7, 42367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heikkilä, T. J., Ylä-Outinen, L., Tanskanen, J. M. A., Lappalainen, R. S., Skottman, H., Suuronen, R., et al. (2009). Human embryonic stem cell-derived neuronal cells form spontaneously active neuronal networks in vitro. Experimental Neurology, 218(1), 109–116.

    Article  CAS  PubMed  Google Scholar 

  • Hopkins, A. M., DeSimone, E., Chwalek, K., & Kaplan, D. L. (2015). 3D in vitro modeling of the central nervous system. Progress in Neurobiology, 125, 1–25.

    Article  PubMed  Google Scholar 

  • Hyysalo, A. (2017). In vitro culturing conditions for human pluripotent stem cell-derived neural cells: Tissue engineering applications for spinal cord injury repair (Dissertation, Tampere University Press, 2017).

    Google Scholar 

  • Hyysalo, A., Ristola, M., Joki, T., Honkanen, M., Vippola, M., & Narkilahti, S. (2017a). Aligned poly(ε-caprolactone) nanofibers guide the orientation and migration of human pluripotent stem cell-derived neurons, astrocytes, and oligodendrocyte precursor cells in vitro. Macromolecular Bioscience, 17(7), 1600517.

    Article  CAS  Google Scholar 

  • Hyysalo, A., Ristola, M., Mäkinen, M. E.-L., Häyrynen, S., Nykter, M., & Narkilahti, S. (2017b). Laminin α5 substrates promote survival, network formation and functional development of human pluripotent stem cell-derived neurons in vitro. Stem Cell Research, 24, 118–127.

    Article  CAS  PubMed  Google Scholar 

  • Ito, S., Hansen, M. E., Heiland, R., Lumsdaine, A., Litke, A. M., & Beggs, J. M. (2011). Extending transfer entropy improves identification of effective connectivity in a spiking cortical network model. PLoS One, 6(11), e27431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnstone, A. F. M., Gross, G. W., Weiss, D. G., Schroeder, O. H.-U., Gramowski, A., & Shafer, T. J. (2010). Microelectrode arrays: A physiologically based neurotoxicity testing platform for the 21st century. Neurotoxicology, 31(4), 331–350.

    Article  CAS  PubMed  Google Scholar 

  • Kapucu, F. E. (2015). Joint analysis of extracellular spike waveforms and neuronal network bursts. [Software] Available via MATLAB Central File Exchange, The MathWorks, Inc. Accessed March 5, 2018, from https://se.mathworks.com/matlabcentral/fileexchange/54277

  • Kapucu, F. E. (2016a). Spectral entropy based neuronal network synchronization analysis: CorSE. [Software] Available via MATLAB Central File Exchange, The MathWorks, Inc. Accessed March 5, 2018, from https://se.mathworks.com/matlabcentral/fileexchange/59626

  • Kapucu, F. E. (2016b). Methods to enhance information extraction from microelectrode array measurements of neuronal networks (Dissertation, Tampere University of Technology, vol. 1438, 2016).

    Google Scholar 

  • Kapucu, F. E., Mäkinen, M. E.-L., Tanskanen, J. M. A., Ylä-Outinen, L., Narkilahti, S., & Hyttinen, J. A. K. (2016b). Joint analysis of extracellular spike waveforms and neuronal network bursts. Journal of Neuroscience Methods, 259, 143–155.

    Article  PubMed  Google Scholar 

  • Kapucu, F. E., Mikkonen, J. E., Tanskanen, J. M. A., & Hyttinen J. A. K.. (2015). Quantification and automatized adaptive detection of in vivo and in vitro neuronal bursts based on signal complexity. In Proceedings of 2015 37th annual international conference of the engineering in medicine and biology society (EMBC), Milan, Italy (pp. 4729–4732).

    Google Scholar 

  • Kapucu, F. E., Mikkonen, J. E., Tanskanen, J. M. A., & Hyttinen J. A. K.. (2016a). Analyzing the feasibility of time correlated spectral entropy for the assessment of neuronal synchrony. In 2016 IEEE 38th annual international conference of the engineering in medicine and biology society (EMBC), Orlando (pp. 1595–1598).

    Google Scholar 

  • Kapucu, F. E., Tanskanen, J. M. A., Christophe, F., Mikkonen, T., & Hyttinen, J. A. K.. (2017a). Evaluation of the effective and functional connectivity estimators for microelectrode array recordings during in vitro neuronal network maturation. In H. Eskola, O. Väisänen, J. Viik, et al. (Eds.), European medical and biological engineering conference, Nordic-Baltic conference on biomedical engineering and medical physics (EMBEC & NBC 2017), Tampere, Finland, June 2017. IFMBE proceedings (Vol. 65, pp. 1105–1108). Singapore: Springer.

    Google Scholar 

  • Kapucu, F. E., Tanskanen, J. M. A., Mikkonen, J. E., Ylä-Outinen, L., Narkilahti, S., & Hyttinen, J. A. K. (2012). Burst analysis tool for developing neuronal networks exhibiting highly varying action potential dynamics. Frontiers in Computational Neuroscience, 6, 38.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapucu, F. E., Välkki, I., Christophe, F., Tanskanen, J. M. A., Johansson, J., Mikkonen, T., et al.. (2017b). On electrophysiological signal complexity during biological neuronal network development and maturation. In 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC), Seogwipo, South Korea (pp. 3333–3338).

    Google Scholar 

  • Kapucu, F. E., Välkki, I., Mikkonen, J. E., Leone, C., Lenk, K., Tanskanen, J. M. A., et al. (2016c). Spectral entropy based neuronal network synchronization analysis based on microelectrode array measurements. Frontiers in Computational Neuroscience, 10, 112.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karvinen, J., Joki, T., Ylä-Outinen, L., Koivisto, J. T., Narkilahti, S., & Kellomäki, M. (2018). Soft hydrazone crosslinked hyaluronan- and alginate-based hydrogels as 3D supportive matrices for human pluripotent stem cell-derived neuronal cells. Reactive and Functional Polymers, 124, 29–39.

    Article  CAS  Google Scholar 

  • Kasteel, E. E. J., & Westerink, R. H. S. (2017). Comparison of the acute inhibitory effects of tetrodotoxin (TTX) in rat and human neuronal networks for risk assessment purposes. Toxicology Letters, 270, 12–16.

    Article  CAS  PubMed  Google Scholar 

  • Kawada, J., Kaneda, S., Kirihara, T., Maroof, A., Levi, T., Eggan, K., et al. (2017). Generation of a motor nerve organoid with human stem cell-derived neurons. Stem Cell Reports, 9(5), 1441–1449.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelava, I., & Lancaster, M. A. (2016). Dishing out mini-brains: Current progress and future prospects in brain organoid research. Developmental Biology, 420(2), 199–209.

    Article  CAS  PubMed  Google Scholar 

  • Kirkeby, A., Grealish, S., Wolf, D. A., Nelander, J., Wood, J., Lundblad, M., et al. (2012). Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Reports, 1(6), 703–714.

    Article  CAS  PubMed  Google Scholar 

  • Koivisto, J. T., Joki, T., Parraga, J. E., Pääkkönen, R., Ylä-Outinen, R., Salonen, L., et al. (2017). Bioamine-crosslinked gellan gum hydrogel for neural tissue engineering. Biomedical Materials, 12(2), 025014.

    Article  PubMed  Google Scholar 

  • Krencik, R., Weick, J. P., Liu, Y., Zhang, Z.-J., & Zhang, S.-C. (2011). Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nature Biotechnology, 29(6), 528–534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreutzer, J., Ylä-Outinen, L., Kärnä, P., Kaarela, T., Mikkonen, J., Skottman, H., et al. (2012). Structured PDMS chambers for enhanced human neuronal cell activity on MEA platforms. Journal of Bionic Engineering, 9(1), 1–10.

    Article  Google Scholar 

  • Kreutzer, J., Ylä-Outinen, L., Mäki, A.-J., Ristola, M., Narkilahti, S., & Kallio, P. (2017). Cell culture chamber with gas supply for prolonged recording of human neuronal cells on microelectrode array. Journal of Neuroscience Methods, 280, 27–35.

    Article  CAS  PubMed  Google Scholar 

  • Lappalainen, R. S., Salomäki, M., Ylä-Outinen, L., Heikkilä, T. J., Hyttinen, J. A. K., Pihlajamäki, H., et al. (2010). Similarly derived and cultured hESC lines show variation in their developmental potential towards neuronal cells in long-term culture. Regenerative Medicine, 5(5), 749–762.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J., Woo, D.-H., Park, H.-J., Park, K., Ko, D. S., & Kim, J.-H. (2017). Human induced pluripotent stem cell line with cytochrome P450 enzyme polymorphism (CYP2C19*2/CYP3A5*3C) generated from lymphoblastoid cells. Stem Cell Research, 27, 34–37.

    Article  CAS  PubMed  Google Scholar 

  • Lewicki, M. S. (1998). A review of methods for spike sorting: The detection and classification of neural action potentials. Network: Computation in Neural Systems, 9(4), R53–R78.

    Article  CAS  Google Scholar 

  • Mäkinen, M. E.-L., Ylä-Outinen, L., & Narkilahti, S. (2018). GABA and gap junctions in the development of synchronized activity in human pluripotent stem cell-derived neural networks. Frontiers in Cellular Neuroscience, 12, 56.

    Article  PubMed  PubMed Central  Google Scholar 

  • Markou, A., Chiamulera, C., Geyer, M. A., Tricklebank, M., & Steckler, T. (2009). Removing obstacles in neuroscience drug discovery: The future path for animal models. Neuropsychopharmacology, 34(1), 74–89.

    Article  CAS  PubMed  Google Scholar 

  • Martynoga, B., Drechsel, D., & Guillemot, F. (2012). Molecular control of neurogenesis: A view from the mammalian cerebral cortex. Cold Spring Harbor Perspectives in Biology, 4, a008359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maury, Y., Côme, J., Piskorowski, R. A., Salah-Mohellibi, N., Chevaleyre, V., Peschanski, M., et al. (2015). Combinatorial analysis of developmental cues efficiently converts human pluripotent stem cells into multiple neuronal subtypes. Nature Biotechnology, 33(1), 89–96.

    Article  CAS  PubMed  Google Scholar 

  • Mazzoni, A., Broccard, F. D., Garcia-Perez, E., Bonifazi, P., Ruaro, M. E., & Torre, V. (2007). On the dynamics of the spontaneous activity in neuronal networks. PLoS One, 2(5), e439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mertens, J., Marchetto, M. C., Bardy, C., & Gage, F. H. (2016). Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience. Nature Reviews. Neuroscience, 17(7), 424–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, J. A., Horvath, S., & Geschwind, D. H. (2010). Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways. Proceedings of the National Academy of Sciences of the United States of America, 107(28), 12698–12703.

    Article  PubMed  PubMed Central  Google Scholar 

  • Muratore, C. R., Srikanth, P., Callahan, D. G., & Young-Pearse, T. L. (2014). Comparison and optimization of hiPSC forebrain cortical differentiation protocols. PLoS One, 9(8), e105807.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nat, R., Nilbratt, M., Narkilahti, S., Winblad, B., Hovatta, O., & Nordberg, A. (2007). Neurogenic neuroepithelial and radial glial cells generated from six human embryonic stem cell lines in serum-free suspension and adherent cultures. Glia, 55(4), 385–399.

    Article  PubMed  Google Scholar 

  • Nedergaard, M., Ransom, B., & Goldman, S. A. (2003). New roles for astrocytes: Redefining the functional architecture of the brain. Trends in Neurosciences, 26(10), 523–530.

    Article  CAS  PubMed  Google Scholar 

  • Odawara, A., Katoh, H., Matsuda, N., & Suzuki, I. (2016a). Induction of long-term potentiation and depression phenomena in human induced pluripotent stem cell-derived cortical neurons. Biochemical and Biophysical Research Communications, 469(4), 856–862.

    Article  CAS  PubMed  Google Scholar 

  • Odawara, A., Katoh, H., Matsuda, N., & Suzuki, I. (2016b). Physiological maturation and drug responses of human induced pluripotent stem cell-derived cortical neuronal networks in long-term culture. Scientific Reports, 6, 26181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odawara, A., Saitoh, Y., Alhebshi, A. H., Gotoh, M., & Suzuki, I. (2014). Long-term electrophysiological activity and pharmacological response of a human induced pluripotent stem cell-derived neuron and astrocyte co-culture. Biochemical and Biophysical Research Communications, 443(4), 1176–1181.

    Article  CAS  PubMed  Google Scholar 

  • Paavilainen, T., Pelkonen, A., Mäkinen, M. E.-L., Peltola, M., Huhtala, H., Fayuk, D., et al. (2018). Effect of prolonged differentiation on functional maturation of human pluripotent stem cell-derived neuronal cultures. Stem Cell Research, 27, 151–161.

    Article  CAS  PubMed  Google Scholar 

  • Pamies, D., Barreras, P., Block, K., Makri, G., Kumar, A., Wiersma, D., et al. (2016). A human brain microphysiological system derived from induced pluripotent stem cells to study neurological diseases and toxicity. ALTEX, 34(3), 362–337.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pappas, J. J., & Yang, P. C. (2008). Human ESC vs. iPSC—Pros and cons. Journal of Cardiovascular Translational Research, 1(2), 96–99.

    Article  PubMed  Google Scholar 

  • Park, J. W., Vahidi, B., Taylor, A. M., Rhee, S. W., & Jeon, N. L. (2006). Microfluidic culture platform for neuroscience research. Nature Protocols, 1(4), 2128–2136.

    Article  CAS  PubMed  Google Scholar 

  • Paşca, A. M., Sloan, S. A., Clarke, L. E., Tian, Y., Makinson, C. D., Huber, N., et al. (2015). Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nature Methods, 12(7), 671–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasquale, V., Martinoia, S., & Chiappalone, M. (2010). A self-adapting approach for the detection of bursts and network bursts in neuronal cultures. Journal of Computational Neuroscience, 29(1–2), 213–229.

    Article  PubMed  Google Scholar 

  • Pautot, S., Wyart, C., & Isacoff, E. Y. (2008). Colloid-guided assembly of oriented 3D neuronal networks. Nature Methods, 5(8), 735–740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawlowski, M., Ortmann, D., Bertero, A., Tavares, J. M., Pedersen, R. A., Vallier, L., et al. (2017). Inducible and deterministic forward programming of human pluripotent stem cells into neurons, skeletal myocytes, and oligodendrocytes. Stem Cell Reports, 8(4), 803–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reubinoff, B. E., Itsykson, P., Turetsky, T., Pera, M. F., Reinhartz, E., Itzik, A., et al. (2001). Neural progenitors from human embryonic stem cells. Nature Biotechnology, 19(12), 1134–1140.

    Article  CAS  PubMed  Google Scholar 

  • Roopun, A. K., Simonotto, J. D., Pierce, M. L., Jenkins, A., Nicholson, C., Schofield, I. S., et al. (2010). A nonsynaptic mechanism underlying interictal discharges in human epileptic neocortex. Proceedings of the National Academy of Sciences of the United States of America, 107(1), 338–343.

    Article  PubMed  Google Scholar 

  • Roybon, L., Lamas, N. J., Garcia-Diaz, A., Yang, E. J., Sattler, R., Jackson-Lewis, V., et al. (2013). Human stem cell-derived spinal cord astrocytes with defined mature or reactive phenotypes. Cell Reports, 4(5), 1035–1048.

    Article  CAS  PubMed  Google Scholar 

  • Schutte, R. J., Xie, Y., Ng, N. N., Figueroa, P., Pham, A. T., & O’Dowd, D. K. (2018). Astrocyte-enriched feeder layers from cryopreserved cells support differentiation of spontaneously active networks of human iPSC-derived neurons. Journal of Neuroscience Methods, 294, 91–101.

    Article  PubMed  Google Scholar 

  • Seidel, D., Jahnke, H.-G., Englich, B., Girard, M., & Robitzki, A. A. (2017). In vitro field potential monitoring on a multi-microelectrode array for the electrophysiological long-term screening of neural stem cell maturation. Analyst, 142(11), 1929–1937.

    Article  CAS  PubMed  Google Scholar 

  • Selinger, J. V., Kulagina, N. V., O’Shaughnessy, T. J., Ma, W., & Pancrazio, J. J. (2007). Methods for characterizing interspike intervals and identifying bursts in neuronal activity. Journal of Neuroscience Methods, 162(1–2), 64–71.

    Article  PubMed  Google Scholar 

  • Shuler, M. L., & Hickman, J. J. (2014). Toward in vitro models of brain structure and function. Proceedings of the National Academy of Sciences of the United States of America, 111(38), 13682–13683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simão, D., Pinto, C., Piersanti, S., Weston, A., Peddie, C. J., Bastos, A. E. P., et al. (2015). Modeling human neural functionality in vitro: Three-dimensional culture for dopaminergic differentiation. Tissue Engineering. Part A, 21(3–4), 654–668.

    Article  PubMed  Google Scholar 

  • Subramaniyam, N. P. (2016). Recurrence network analysis of EEG signals: A geometric approach (Dissertation, Tampere University of Technology, Vol. 1364, 2016).

    Google Scholar 

  • Subramaniyam, N. P., & Hyttinen, J. (2015). Dynamics of intracranial electroencephalographic recordings from epilepsy patients using univariate and bivariate recurrence networks. Physical Review E, 91(2), 022927.

    Article  CAS  Google Scholar 

  • Subramaniyam, N. P., Hyttinen, J., Hatsopoulos, N. G., & Takahashi, K.. (2015). Recurrence network analysis of wide band oscillations of local field potentials from the primary motor cortex reveals rich dynamics. In 2015 7th international IEEE/EMBS conference on neural engineering (NER), Montpellier, France (pp. 960–963).

    Google Scholar 

  • Suzuki, I. K., & Vanderhaeghen, P. (2015). Is this a brain which I see before me? Modeling human neural development with pluripotent stem cells. Development, 142(18), 3138–3150.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.

    Article  CAS  PubMed  Google Scholar 

  • Tanskanen, J. (2017). Automatic objective neuronal spike detection. Available via MATLAB Central File Exchange, The MathWorks, Inc. Accessed March 5, 2018, from https://se.mathworks.com/matlabcentral/fileexchange/55227

  • Tanskanen, J. M. A., Kapucu, F. E., Vornanen, I., & Hyttinen, J. A. K.. (2016). Automatic objective thresholding to detect neuronal action potentials. In 2016 24th European signal processing conference (EUSIPCO), Budapest, Hungary, August–September 2016 (pp. 662–666).

    Google Scholar 

  • Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  • Toivanen, M., Pelkonen, A., Mäkinen, M., Ylä-Outinen, L., Sukki, L., Kallio, P., et al. (2017). Optimised PDMS tunnel devices on MEAs increase the probability of detecting electrical activity from human stem cell-derived neuronal networks. Frontiers in Neuroscience, 11, 606.

    Article  PubMed  PubMed Central  Google Scholar 

  • Toivonen, S., Ojala, M., Hyysalo, A., Ilmarinen, T., Rajala, K., Pekkanen-Mattila, M., et al. (2013). Comparative analysis of targeted differentiation of human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells reveals variability associated with incomplete transgene silencing in retrovirally derived hiPSC lines. Stem Cells Translational Medicine, 2(2), 83–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tukker, A. M., de Groot, M. W. G. D. M., Wijnolts, F. M. J., Kasteel, E. E. J., Hondebrink, L., & Westerink, R. (2016). Is the time right for in vitro neurotoxicity testing using human iPSC-derived neurons? ALTEX, 33(3), 261–271.

    Article  PubMed  Google Scholar 

  • Välkki, I. A., Lenk, K., Mikkonen, J. E., Kapucu, F. E., & Hyttinen, J. A. K. (2017). Network-wide adaptive burst detection depicts neuronal activity with improved accuracy. Frontiers in Computational Neuroscience, 11, 40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagenaar, D. A., Pine, J., & Potter, S. M. (2006). An extremely rich repertoire of bursting patterns during the development of cortical cultures. BMC Neuroscience, 7, 11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson, S. B., & Emerson, R. (2002). Spike detection: A review and comparison of algorithms. Clinical Neurophysiology, 113(12), 1873–1881.

    Article  PubMed  Google Scholar 

  • Xie, Y., Schutte, R. J., Ng, N. N., Ess, K. C., Schwartz, P. H., & O’Dowd, D. K. (2017). Reproducible and efficient generation of functionally active neurons from human hiPSCs for preclinical disease modeling. Stem Cell Research, 26, 84–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, T., Molnar, P., Gregory, C., Das, M., Boland, T., & Hickman, J. J. (2009). Electrophysiological characterization of embryonic hippocampal neurons cultured in a 3D collagen hydrogel. Biomaterials, 30(26), 4377–4383.

    Article  CAS  PubMed  Google Scholar 

  • Ylä-Outinen, L., Heikkilä, J., Skottman, H., Suuronen, R., Äänismaa, R., & Narkilahti, S. (2010). Human cell-based micro electrode array platform for studying neurotoxicity. Frontiers in Neuroengineering, 3, 111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ylä-Outinen, L., Joki, T., Varjola, M., Skottman, H., & Narkilahti, S. (2014). Three-dimensional growth matrix for human embryonic stem cell-derived neuronal cells. Journal of Tissue Engineering and Regenerative Medicine, 8(3), 186–194.

    Article  CAS  PubMed  Google Scholar 

  • Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920.

    Article  CAS  PubMed  Google Scholar 

  • Zirra, A., Wiethoff, S., & Patani, R. (2016). Neural conversion and patterning of human pluripotent stem cells: A developmental perspective. Stem Cells International, 2016, 8291260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Tiina Joki, PhD, and Outi Paloheimo, MSc, for their help with figure preparation. This work was funded by the Human Spare Parts Project funded by Business Finland (formerly the Finnish Funding Agency for Technology and Innovation (TEKES)), 3DNeuroN project in the European Union’s Seventh Framework Programme, Future and Emerging Technologies (grant agreement number 296590), Academy of Finland grants (LY grant number 286990 and SN grant numbers 311017 and 312414), and Jane and Aatos Erkko Foundation (JMAT grant “Biological Neuronal Communications and Computing with ICT”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanna Narkilahti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ylä-Outinen, L., Tanskanen, J.M.A., Kapucu, F.E., Hyysalo, A., Hyttinen, J.A.K., Narkilahti, S. (2019). Advances in Human Stem Cell-Derived Neuronal Cell Culturing and Analysis. In: Chiappalone, M., Pasquale, V., Frega, M. (eds) In Vitro Neuronal Networks. Advances in Neurobiology, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-11135-9_13

Download citation

Publish with us

Policies and ethics