Skip to main content

Weakly Coupled Systems of Semilinear Effectively Damped Waves with Different Time-Dependent Coefficients in the Dissipation Terms and Different Power Nonlinearities

  • Chapter
  • First Online:
New Tools for Nonlinear PDEs and Application

Part of the book series: Trends in Mathematics ((TM))

Abstract

We study the global existence of small data solutions to the Cauchy problem for the coupled system of semilinear damped wave equations with different effective dissipation terms and different exponents of power nonlinearities. The data are supposed to belong to different classes of regularity. We will show the interaction of the exponents p and q on the one hand and on the other hand the interaction of the dissipation terms b 1(t)u t and b 2(t)v t.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Christ, M. Weinstein, Dispersion of small-amplitude solutions of the generalized Korteweg-de Vries equation. J. Funct. Anal. 100, 87–109 (1991)

    Article  MathSciNet  Google Scholar 

  2. M. D’Abbicco, The threshold of effective damping for semilinear wave equations. Math. Meth. Appl. Sci. 38, 1032–1045 (2015)

    Article  MathSciNet  Google Scholar 

  3. M. D’Abbicco, S. Lucente, M. Reissig, Semi-linear wave equations with effective damping. Chin. Ann. Math. 34B(3), 345–380 (2013)

    Article  MathSciNet  Google Scholar 

  4. L. Grafakos, Classical and Modern Fourier Analysis (Prentice Hall, Upper Saddle River, 2004)

    Google Scholar 

  5. L. Grafakos, S. Oh, The Kato Ponce inequality. Commun. Partial Differ. Equ. 39(6), 1128–1157 (2014)

    Article  MathSciNet  Google Scholar 

  6. A. Gulisashvili, M. Kon, Exact smoothing properties of Schrödinger semigroups. Am. J. Math. 118, 1215–1248 (1996)

    Article  Google Scholar 

  7. H. Hajaiej, L. Molinet, T. Ozawa, B. Wang, Necessary and sufficient conditions for the fractional Gagliardo-Nirenberg inequalities and applications to Navier-Stokes and generalized boson equations. Harmon. Anal. Nonlinear Partial Differ. Equ. B26, 159–175 (2011)

    MathSciNet  MATH  Google Scholar 

  8. T. Kato, G. Ponce, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Commun. Pure Appl. Math. 46(4), 527–620 (1993)

    Article  MathSciNet  Google Scholar 

  9. C.E. Kenig, G. Ponce, L. Vega, Commutator estimates and the Euler and Navier Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)

    Article  MathSciNet  Google Scholar 

  10. A. Mohammed Djaouti, M. Reissig, Weakly coupled systems of semilinear effectively damped waves with time-dependent coefficient, different power nonlinearities and different regularity of the data. Nonlinear Anal. 175, 28–55 (2018)

    Article  MathSciNet  Google Scholar 

  11. K. Nishihara, Y. Wakasugi, Critical exponant for the Cauchy problem to the weakly coupled wave system. Nonlinear Anal. 108, 249–259 (2014)

    Article  MathSciNet  Google Scholar 

  12. A. Palmieri, M. Reissig, Semi-linear wave models with power non-linearity and scale invariant time-dependent mass and dissipation, II. Math. Nachr. 291(11–12), 1859–1892 (2018)

    Article  MathSciNet  Google Scholar 

  13. D.T. Pham, M. Kainane Mezadek, M. Reissig, Global existence for semilinear structurally damped σ −evolution models. J. Math. Anal. Appl. 431, 569–596 (2015)

    Google Scholar 

  14. T. Runst, W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. De Gruyter Series in Nonlinear Analysis and Applications (Walter de Gruyter & Co., Berlin, 1996)

    Google Scholar 

  15. J. Wirth, Asymptotic properties of solutions to wave equations with time-dependent dissipation. Ph.D. thesis, TU Bergakademie Freiberg (2004)

    Google Scholar 

  16. J. Wirth, Wave equations with time-dependent dissipation II, Effective dissipation. J. Differ. Equ. 232, 74–103 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Reissig .

Editor information

Editors and Affiliations

Appendix

Appendix

In the Appendix we collect some background material which is helpful and important for our approach. Most of these tools are from the theory of harmonic analysis and function spaces. In particular, these tools allow us to estimate power nonlinearities in different scales of function spaces.

Proposition A.1

Let 1 < p, p 0, p 1 < ∞, σ > 0 and s ∈ [0, σ). Then it holds the following fractional Gagliardo-Nirenberg inequality for all \(u\in L^{p_{0}}(\mathbb {R}^{n}) \cap \dot {H} _{p_{1}}^{\sigma }(\mathbb {R}^{n}):\)

$$\displaystyle \begin{aligned} \|u\|{}_{\dot{H} _{p}^{s}(\mathbb{R}^{n})}\lesssim\|u\|{}_{L^{p_{0}}(\mathbb{R}^{n})}^{(1-\theta)}\|u\|{}_{\dot{H} _{p_{1}}^{\sigma}(\mathbb{R}^{n})}^{\theta}, \end{aligned} $$
(48)

where \(\theta =\theta _{s,\sigma }:=\frac {\frac {1}{p_{0}}-\frac {1}{p}+\frac {s}{n}}{\frac {1}{p_{0}}-\frac {1}{p_{1}}+\frac {\sigma }{n}}\) and \( \frac {s}{\sigma }\leq \theta \leq 1.\)

Proof

For the proof see [7] and [1, 4,5,6, 8, 9].

Proposition A.2

Let us assume s > 0 and 1 ≤ r , 1 < p 1, p 2, q 1, q 2 ≤∞ satisfying the following relation

$$\displaystyle \begin{aligned} \frac{1}{r}= \frac{1}{p_{1}}+\frac{1}{p_{2}}= \frac{1}{q_{1}}+\frac{1}{q_{2}}. \end{aligned}$$

Then the following fractional Leibniz rule holds:

$$\displaystyle \begin{aligned} \||D|{}^{s}(fg)\|{}_{L^{r}(\mathbb{R}^{n})}\lesssim \||D|{}^{s} f \|{}_{L^{p_{1}}(\mathbb{R}^{n})} \|g\|{}_{L^{p_{2}}(\mathbb{R}^{n})}+\|f\|{}_{L^{q_{1}}(\mathbb{R}^{n})}\||D|{}^{s} g \|{}_{L^{q_{2}}(\mathbb{R}^{n})} \end{aligned} $$
(49)

for all \(f\in \dot {H} _{p_{1}}^{s}(\mathbb {R}^{n})\cap L^{q_{1}}(\mathbb {R}^{n})\) and \(g\in \dot {H} _{q_{2}}^{s}(\mathbb {R}^{n})\cap L^{p_{2}}(\mathbb {R}^{n}).\)

For more details concerning fractional Leibniz rules see [4].

Proposition A.3

Let us choose s > 0, p > ⌈sand 1 < r, r 1, r 2 < ∞ satisfying

$$\displaystyle \begin{aligned} \frac{1}{r}=\frac{p-1}{r_{1}}+\frac{1}{r_{2}}.\end{aligned}$$

Let us denote by F(u) one of the functions |u|p, ±|u|p−1 u. Then it holds the following fractional chain rule:

$$\displaystyle \begin{aligned} \||D|{}^{s}F(u)\|{}_{L^{r}(\mathbb{R}^{n})}\lesssim \|u\|{}_{L^{r_{1}}(\mathbb{R}^{n})}^{p-1} \||D|{}^{s}u\|{}_{L^{r_{2}}(\mathbb{R}^{n})}. \end{aligned} $$
(50)

Proof

For the proof see [12].

Proposition A.4

Let p > 1 and \(u\in H^{s}_{m}(\mathbb {R}^{n})\) , where \(s\in \left (\frac {n}{m},p \right ) .\) Then the following estimates hold:

$$\displaystyle \begin{aligned}\ \||u|{}^{p}\|{}_{H^{s}_{m}(\mathbb{R}^{n})}\lesssim\|u\|{}_{ H^{s}_{m}(\mathbb{R}^{n})}\|u\|{}^{p-1}_{L^{\infty}(\mathbb{R}^{n})}, \end{aligned}$$
$$\displaystyle \begin{aligned} \|u|u|{}^{p-1}\|{}_{H^{s}_{m}(\mathbb{R}^{n})}\lesssim\|u\|{}_{ H^{s}_{m}(\mathbb{R}^{n})}\|u\|{}^{p-1}_{L^{\infty}(\mathbb{R}^{n})}. \end{aligned}$$

Proof

For the proof see [14].

We can derive from Proposition A.4 the following corollary.

Corollary A.5

Under the assumptions of Proposition A.4 it holds:

$$\displaystyle \begin{aligned} \||u|{}^{p}\|{}_{\dot{H}^{s}_{m}(\mathbb{R}^{n})}\lesssim\|u\|{}_{ \dot{H}^{s}_{m}(\mathbb{R}^{n})}\|u\|{}^{p-1}_{L^{\infty}(\mathbb{R}^{n})}, \end{aligned}$$
$$\displaystyle \begin{aligned} \|u|u|{}^{p-1}\|{}_{\dot{H}^{s}_{m}(\mathbb{R}^{n})}\lesssim\|u\|{}_{ \dot{H}^{s}_{m}(\mathbb{R}^{n})}\|u\|{}^{p-1}_{L^{\infty}(\mathbb{R}^{n})}. \end{aligned}$$

Proof

For the proof see [13].

Lemma A.6

Let 0 < 2s  < n < 2s. Then for any function \(f\in \dot {H}^{s^{*}}(\mathbb {R}^{n})\cap \dot {H}^{s}(\mathbb {R}^{n})\) one has

$$\displaystyle \begin{aligned} \|f\|{}_{L^{\infty}(\mathbb{R}^{n})}\leq\|f\|{}_{\dot{H}^{s^{*}}(\mathbb{R}^{n})}+\|f\|{}_{\dot{H}^{s}(\mathbb{R}^{n})}. \end{aligned}$$

Proof

For the proof see [2].

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohammed Djaouti, A., Reissig, M. (2019). Weakly Coupled Systems of Semilinear Effectively Damped Waves with Different Time-Dependent Coefficients in the Dissipation Terms and Different Power Nonlinearities. In: D'Abbicco, M., Ebert, M., Georgiev, V., Ozawa, T. (eds) New Tools for Nonlinear PDEs and Application. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-10937-0_3

Download citation

Publish with us

Policies and ethics