Skip to main content

Abstract

Tumors are highly complex tissues consisting, beside the transformed cells, of various non-transformed cells including immune cells. Tumor-associated immunity has been a major focus of research in oncology recently due to the now widely accepted notion that immunity critically shapes tumor development. While chronic inflammation can favor tumorigenesis largely by promoting cellular transformation, immune cells can recognize cancer cells as altered-self and eliminate them. However, tumors that have escaped immune attack have found ways to educated immune cells to actively support tumor development. We summarize the multifactorial of immunity with transformed cells, focusing on the key elements involved in the generation of antitumor responses: the cellular and molecular components of the immune system. On this basis, we discuss the current efforts to develop immunotherapeutic approaches with the goal to fight cancer, and delineate future challenges in anti-cancer immunotherapy.

Final manuscript submitted on May 27, 2018.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Selected Readings

References

  1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  2. Albini A, Sporn MB. The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer. 2007;7(2):139–47. https://doi.org/10.1038/nrc2067.

    Article  CAS  PubMed  Google Scholar 

  3. Decker WK, da Silva RF, Sanabria MH, Angelo LS, Guimaraes F, Burt BM, et al. Cancer immunotherapy: historical perspective of a clinical revolution and emerging preclinical animal models. Front Immunol. 2017;8:829. https://doi.org/10.3389/fimmu.2017.00829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Coley WB. The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893. Clin Orthop Relat Res. 1991;(262):3–11.

    Google Scholar 

  5. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3(11):991–8.

    Article  CAS  PubMed  Google Scholar 

  6. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168(4):707–23. https://doi.org/10.1016/j.cell.2017.01.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Trinchieri G. Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu Rev Immunol. 2012;30:677–706. https://doi.org/10.1146/annurev-immunol-020711-075008.

    Article  CAS  PubMed  Google Scholar 

  8. Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S, Yamakido M, et al. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med. 2001;345(11):784–9. https://doi.org/10.1056/NEJMoa001999.

    Article  CAS  PubMed  Google Scholar 

  9. De Strooper LM, Hesselink AT, Berkhof J, Meijer CJ, Snijders PJ, Steenbergen RD, et al. Combined CADM1/MAL methylation and cytology testing for colposcopy triage of high-risk HPV-positive women. Cancer Epidemiol Biomarkers Prev. 2014;23(9):1933–7. https://doi.org/10.1158/1055-9965.EPI-14-0347.

    Article  CAS  PubMed  Google Scholar 

  10. Horner SM, Gale M Jr. Regulation of hepatic innate immunity by hepatitis C virus. Nat Med. 2013;19(7):879–88. https://doi.org/10.1038/nm.3253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Coussens LM, Zitvogel L, Palucka AK. Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science. 2013;339(6117):286–91. https://doi.org/10.1126/science.1232227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kuraishy A, Karin M, Grivennikov SI. Tumor promotion via injury- and death-induced inflammation. Immunity. 2011;35(4):467–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Salama R, Sadaie M, Hoare M, Narita M. Cellular senescence and its effector programs. Genes Dev. 2014;28(2):99–114. https://doi.org/10.1101/gad.235184.113. 28/2/99 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nathan C, Cunningham-Bussel A. Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol. 2013;13(5):349–61. https://doi.org/10.1038/nri3423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21(3):309–22. https://doi.org/10.1016/j.ccr.2012.02.022. S1535-6108(12)00082-7 [pii].

    Article  CAS  PubMed  Google Scholar 

  16. Schafer M, Werner S. Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol. 2008;9(8):628–38.

    Article  CAS  PubMed  Google Scholar 

  17. Boon T, Cerottini JC, Van den Eynde B, van der Bruggen P, Van Pel A. Tumor antigens recognized by T lymphocytes. Annu Rev Immunol. 1994;12:337–65. https://doi.org/10.1146/annurev.iy.12.040194.002005.

    Article  CAS  PubMed  Google Scholar 

  18. Bissell MJ, Hines WC. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med. 2011;17(3):320–9. https://doi.org/10.1038/nm.2328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Blankenstein T, Coulie PG, Gilboa E, Jaffee EM. The determinants of tumour immunogenicity. Nat Rev Cancer. 2012;12(4):307–13. https://doi.org/10.1038/nrc3246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Roithmaier S, Haydon AM, Loi S, Esmore D, Griffiths A, Bergin P, et al. Incidence of malignancies in heart and/or lung transplant recipients: a single-institution experience. J Heart Lung Transplant. 2007;26(8):845–9. https://doi.org/10.1016/j.healun.2007.05.019.

    Article  PubMed  Google Scholar 

  21. Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet. 2007;370(9581):59–67. https://doi.org/10.1016/S0140-6736(07)61050-2.

    Article  PubMed  Google Scholar 

  22. Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med. 2015;21(8):938–45. https://doi.org/10.1038/nm.3909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Joseph CG, Darrah E, Shah AA, Skora AD, Casciola-Rosen LA, Wigley FM, et al. Association of the autoimmune disease scleroderma with an immunologic response to cancer. Science. 2014;343(6167):152–7. https://doi.org/10.1126/science.1246886.

    Article  CAS  PubMed  Google Scholar 

  24. Yarchoan M, Johnson BA III, Lutz ER, Laheru DA, Jaffee EM. Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer. 2017;17(9):569. https://doi.org/10.1038/nrc.2017.74.

    Article  CAS  PubMed  Google Scholar 

  25. Imai K, Matsuyama S, Miyake S, Suga K, Nakachi K. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet. 2000;356(9244):1795–9. https://doi.org/10.1016/S0140-6736(00)03231-1.

    Article  CAS  PubMed  Google Scholar 

  26. Lim WA, June CH. The principles of engineering immune cells to treat cancer. Cell. 2017;168(4):724–40. https://doi.org/10.1016/j.cell.2017.01.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–37. https://doi.org/10.1038/nm.3394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Palucka AK, Coussens LM. The basis of oncoimmunology. Cell. 2016;164(6):1233–47. https://doi.org/10.1016/j.cell.2016.01.049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014;41(1):49–61. https://doi.org/10.1016/j.immuni.2014.06.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. van der Woude LL, Gorris MAJ, Halilovic A, Figdor CG, de Vries IJM. Migrating into the tumor: a roadmap for T cells. Trends Cancer. 2017;3(11):797–808. https://doi.org/10.1016/j.trecan.2017.09.006.

    Article  CAS  PubMed  Google Scholar 

  31. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16(9):582–98. https://doi.org/10.1038/nrc.2016.73.

    Article  CAS  PubMed  Google Scholar 

  32. De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 2017;17(8):457–74. https://doi.org/10.1038/nrc.2017.51.

    Article  CAS  PubMed  Google Scholar 

  33. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331(6024):1565–70.

    Article  CAS  PubMed  Google Scholar 

  34. Buck MD, Sowell RT, Kaech SM, Pearce EL. Metabolic Instruction of Immunity. Cell. 2017;169(4):570–86. https://doi.org/10.1016/j.cell.2017.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the tumor microenvironment. Science. 2015;348(6230):74–80. https://doi.org/10.1126/science.aaa6204.

    Article  CAS  PubMed  Google Scholar 

  36. Heath WR, Carbone FR. Cross-presentation in viral immunity and self-tolerance. Nat Rev Immunol. 2001;1(2):126–34. https://doi.org/10.1038/35100512.

    Article  CAS  PubMed  Google Scholar 

  37. DuPage M, Bluestone JA. Harnessing the plasticity of CD4(+) T cells to treat immune-mediated disease. Nat Rev Immunol. 2016;16(3):149–63. https://doi.org/10.1038/nri.2015.18.

    Article  CAS  PubMed  Google Scholar 

  38. Fridman WH, Zitvogel L, Sautes-Fridman C, Kroemer G. The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol. 2017;14(12):717–34. https://doi.org/10.1038/nrclinonc.2017.101.

    Article  CAS  PubMed  Google Scholar 

  39. Zou W, Restifo NP. T(H)17 cells in tumour immunity and immunotherapy. Nat Rev Immunol. 2010;10(4):248–56. https://doi.org/10.1038/nri2742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vinuesa CG, Linterman MA, Yu D, MacLennan IC. Follicular helper T cells. Annu Rev Immunol. 2016;34:335–68. https://doi.org/10.1146/annurev-immunol-041015-055605.

    Article  CAS  PubMed  Google Scholar 

  41. Wilke CM, Wu K, Zhao E, Wang G, Zou W. Prognostic significance of regulatory T cells in tumor. Int J Cancer. 2010;127(4):748–58. https://doi.org/10.1002/ijc.25464.

    Article  CAS  PubMed  Google Scholar 

  42. Hunziker L, Klenerman P, Zinkernagel RM, Ehl S. Exhaustion of cytotoxic T cells during adoptive immunotherapy of virus carrier mice can be prevented by B cells or CD4+ T cells. Eur J Immunol. 2002;32(2):374–82. https://doi.org/10.1002/1521-4141(200202)32:2<374::AID-IMMU374>3.0.CO;2-9.

    Article  CAS  PubMed  Google Scholar 

  43. Kreiter S, Vormehr M, van de Roemer N, Diken M, Lower M, Diekmann J, et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature. 2015;520(7549):692–6. https://doi.org/10.1038/nature14426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Knocke S, Fleischmann-Mundt B, Saborowski M, Manns MP, Kuhnel F, Wirth TC, et al. Tailored tumor immunogenicity reveals regulation of CD4 and CD8 T cell responses against cancer. Cell Rep. 2016;17(9):2234–46. https://doi.org/10.1016/j.celrep.2016.10.086.

    Article  CAS  PubMed  Google Scholar 

  45. Zamora AE, Crawford JC, Thomas PG. Hitting the target: how T cells detect and eliminate tumors. J Immunol. 2018;200(2):392–9. https://doi.org/10.4049/jimmunol.1701413.

    Article  CAS  PubMed  Google Scholar 

  46. Melief CJM. Cancer: precision T-cell therapy targets tumours. Nature. 2017;547(7662):165–7. https://doi.org/10.1038/nature23093.

    Article  CAS  PubMed  Google Scholar 

  47. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012;12(4):253–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Facciabene A, Motz GT, Coukos G. T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res. 2012;72(9):2162–71. https://doi.org/10.1158/0008-5472.CAN-11-3687. 72/9/2162 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Weigert A, Sekar D, Brüne B. Tumor-associated macrophages as targets for tumor immunotherapy. Immunotherapy. 2009;1(1):83–95.

    Article  CAS  PubMed  Google Scholar 

  50. Willems JJ, Arnold BP, Gregory CD. Sinister self-sacrifice: the contribution of apoptosis to malignancy. Front Immunol. 2014;5:299. https://doi.org/10.3389/fimmu.2014.00299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Weigert A, Mora J, Sekar D, Syed S, Brune B. Killing is not enough: how apoptosis hijacks tumor-associated macrophages to promote cancer progression. Adv Exp Med Biol. 2016;930:205–39. https://doi.org/10.1007/978-3-319-39406-0_9.

    Article  CAS  PubMed  Google Scholar 

  52. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541(7637):321–30. https://doi.org/10.1038/nature21349.

    Article  CAS  PubMed  Google Scholar 

  53. Vivier E, Ugolini S, Blaise D, Chabannon C, Brossay L. Targeting natural killer cells and natural killer T cells in cancer. Nat Rev Immunol. 2012;12(4):239–52. https://doi.org/10.1038/nri3174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(5):411–22. https://doi.org/10.1056/NEJMoa1001294.

    Article  CAS  PubMed  Google Scholar 

  55. Gomes-Silva D, Ramos CA. Cancer immunotherapy using CAR-T cells: from the research bench to the assembly line. Biotechnol J. 2018;13(2) https://doi.org/10.1002/biot.201700097.

    Article  Google Scholar 

  56. Fournier C, Martin F, Zitvogel L, Kroemer G, Galluzzi L, Apetoh L. Trial watch: adoptively transferred cells for anticancer immunotherapy. Oncoimmunology. 2017;6(11):e1363139. https://doi.org/10.1080/2162402x.2017.1363139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schubert ML, Hoffmann JM, Dreger P, Muller-Tidow C, Schmitt M. Chimeric antigen receptor transduced T cells: tuning up for the next generation. Int J Cancer. 2018;142:1738. https://doi.org/10.1002/ijc.31147.

    Article  CAS  PubMed  Google Scholar 

  58. Rotte A, Jin JY, Lemaire V. Mechanistic overview of immune checkpoints to support the rational design of their combinations in cancer immunotherapy. Ann Oncol. 2018;29:71. https://doi.org/10.1093/annonc/mdx686.

    Article  CAS  PubMed  Google Scholar 

  59. Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol. 2017;8:561. https://doi.org/10.3389/fphar.2017.00561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chang L, Chang M, Chang HM, Chang F. Microsatellite instability: a predictive biomarker for cancer immunotherapy. Appl Immunohistochem Mol Morphol. 2018;26:e15. https://doi.org/10.1097/pai.0000000000000575.

    Article  CAS  PubMed  Google Scholar 

  61. Colle R, Cohen R, Cochereau D, Duval A, Lascols O, Lopez-Trabada D, et al. Immunotherapy and patients treated for cancer with microsatellite instability. Bull Cancer. 2017;104(1):42–51. https://doi.org/10.1016/j.bulcan.2016.11.006.

    Article  PubMed  Google Scholar 

  62. Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 2018;359(6371):104–8. https://doi.org/10.1126/science.aao3290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350(6264):1084–9. https://doi.org/10.1126/science.aac4255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vetizou M, Pitt JM, Daillere R, Lepage P, Waldschmitt N, Flament C, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350(6264):1079–84. https://doi.org/10.1126/science.aad1329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pitt JM, Vétizou M, Daillère R, Roberti MP, Yamazaki T, Routy B, et al. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity. 2016;44(6):1255–69. https://doi.org/10.1016/j.immuni.2016.06.001.

    Article  CAS  PubMed  Google Scholar 

  66. Chowdhury PS, Chamoto K, Honjo T. Combination therapy strategies for improving PD-1 blockade efficacy: a new era in cancer immunotherapy. J Intern Med. 2018;283:110. https://doi.org/10.1111/joim.12708.

    Article  CAS  PubMed  Google Scholar 

  67. Kepp O, Tesniere A, Schlemmer F, Michaud M, Senovilla L, Zitvogel L, et al. Immunogenic cell death modalities and their impact on cancer treatment. Apoptosis. 2009;14(4):364–75. https://doi.org/10.1007/s10495-008-0303-9.

    Article  PubMed  Google Scholar 

  68. de Miguel-Luken MJ, Mansinho A, Boni V, Calvo E. Immunotherapy-based combinations: current status and perspectives. Curr Opin Oncol. 2017;29(5):382–94. https://doi.org/10.1097/cco.0000000000000391.

    Article  PubMed  Google Scholar 

  69. Zhang X, Sharma PK, Peter Goedegebuure S, Gillanders WE. Personalized cancer vaccines: targeting the cancer mutanome. Vaccine. 2017;35(7):1094–100. https://doi.org/10.1016/j.vaccine.2016.05.073.

    Article  CAS  PubMed  Google Scholar 

  70. Braunlein E, Krackhardt AM. Identification and characterization of neoantigens as well as respective immune responses in cancer patients. Front Immunol. 2017;8:1702. https://doi.org/10.3389/fimmu.2017.01702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Capietto AH, Jhunjhunwala S, Delamarre L. Characterizing neoantigens for personalized cancer immunotherapy. Curr Opin Immunol. 2017;46:58–65. https://doi.org/10.1016/j.coi.2017.04.007.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Weigert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mora, J., Alpízar-Alpízar, W., Weigert, A. (2019). Cancer Immunity. In: Parnham, M., Nijkamp, F., Rossi, A. (eds) Nijkamp and Parnham's Principles of Immunopharmacology. Springer, Cham. https://doi.org/10.1007/978-3-030-10811-3_12

Download citation

Publish with us

Policies and ethics