Skip to main content

Graphene Nanocomposites

  • Living reference work entry
  • First Online:
Handbook of Polymer and Ceramic Nanotechnology
  • 28 Accesses

Abstract

Graphene, a 2D carbon sheet and thinnest material in the whole universe, has gained much consideration in current years due to its extraordinary mechanical, electrical, and thermal properties. Graphene is given the name of “magic bullet” as nanotechnology experiences a technological boom after its discovery. It emerges as an auspicious candidate to be used as a filler to fabricate nanocomposites, which is utilized in various applications due to its remarkable characteristics. The aim of this chapter is to provide an inclusive review of the worldwide research on graphene and graphene nanocomposites. This chapter will include the brief introduction of the graphene followed by the synthesis approaches used for the synthesis of graphene and its derivatives. The main emphasis will be on the techniques involved in the fabrication of graphene-based nanocomposites and their industrial applications. The chapter will also highlight the different applications of graphene to improve the various aspects of environment, energy, and biosciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Bi H et al (2012) Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv Funct Mater 22(21):4421–4425

    Article  CAS  Google Scholar 

  • Bipasha FA, Hossain SS, Bhuyan MSA, Uddin MN, Islam MM (2016) Synthesis of graphene. Int Nano Lett 6:65–83

    Article  CAS  Google Scholar 

  • Carpio IEM et al (2012) Toxicity of a polymer–graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells. Nanoscale 4(15):4746–4756

    Article  CAS  Google Scholar 

  • Chandra V et al (2010) Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4(7):3979–3986

    Article  CAS  Google Scholar 

  • Chatterjee S et al (2012) Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites. Chem Phys Lett 531:6–10

    Article  CAS  Google Scholar 

  • Chiu F-C, Huang I-N (2012) Phase morphology and enhanced thermal/mechanical properties of polyamide 46/graphene oxide nanocomposites. Polym Test 31(7):953–962

    Article  CAS  Google Scholar 

  • Choucair M, Thordarson P, Stride JA (2009) Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat Nanotechnol 4(1):30

    Article  CAS  Google Scholar 

  • Cohen-Tanugi D, Grossman JC (2014) Mechanical strength of nanoporous graphene as a desalination membrane. Nano Lett 14(11):6171–6178

    Article  CAS  Google Scholar 

  • Dadashbeik M, Fathi D, Eskandari M (2020) Design and simulation of perovskite solar cells based on graphene and tio2/graphene nanocomposite as electron transport layer. Sol Energy 207:917–924

    Article  CAS  Google Scholar 

  • Das S et al (2011) Localized in situ polymerization on graphene surfaces for stabilized graphene dispersions. ACS Appl Mater Interfaces 3(6):1844–1851

    Article  CAS  Google Scholar 

  • De Heer WA et al (2007) Epitaxial graphene. Solid State Commun 143(1–2):92–100

    Article  CAS  Google Scholar 

  • Dervishi E et al (2009) Large-scale graphene production by RF-cCVD method. Chem Commun 27:4061–4063

    Article  CAS  Google Scholar 

  • Di Ca et al (2008) Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors. Adv Mater 20(17):3289–3293

    Article  CAS  Google Scholar 

  • Du J, Cheng HM (2012) The fabrication, properties, and uses of graphene/polymer composites. Macromol Chem Phys 213(10–11):1060–1077

    Article  CAS  Google Scholar 

  • Du X et al (2008) Approaching ballistic transport in suspended graphene. Nat Nanotechnol 3(8):491–495

    Article  CAS  Google Scholar 

  • Fan Z et al (2010) A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv Mater 22(33):3723–3728

    Article  CAS  Google Scholar 

  • Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530–1534

    Article  CAS  Google Scholar 

  • Hernandez Y et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9):563–568

    Article  CAS  Google Scholar 

  • Hong W et al (2008) Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochem Commun 10(10):1555–1558

    Article  CAS  Google Scholar 

  • Huang Y et al (2010) Polypropylene/graphene oxide nanocomposites prepared by in situ Ziegler− Natta polymerization. Chem Mater 22(13):4096–4102

    Article  CAS  Google Scholar 

  • Huang X et al (2011) Graphene-based materials: synthesis, characterization, properties, and applications. Small 7(14):1876–1902

    Article  CAS  Google Scholar 

  • Janowska I et al (2009) Catalytic unzipping of carbon nanotubes to few-layer graphene sheets under microwaves irradiation. Appl Catal A Gen 371(1–2):22–30

    Article  CAS  Google Scholar 

  • Jiang L et al (2010) Preparation and characterization of graphene/poly (vinyl alcohol) nanocomposites. J Appl Polym Sci 118(1):275–279

    Article  CAS  Google Scholar 

  • Jiang W et al (2014) Dramatic visible activity in phenol degradation of TCNQ@ TiO2 photocatalyst with core–shell structure. Appl Catal B Environ 160:44–50

    Article  CAS  Google Scholar 

  • Jiao L, Wang X, Diankov G, Wang H, Dai H (2010) Facile synthesis of high-quality graphene nanoribbons. Nat Nanotechnol 5(5):321–325

    Google Scholar 

  • Kalaitzidou K, Fukushima H, Drzal LT (2007) A new compounding method for exfoliated graphite–polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Compos Sci Technol 67(10):2045–2051

    Article  CAS  Google Scholar 

  • Kedzierski J et al (2008) Epitaxial graphene transistors on SiC substrates. IEEE Trans Electron Devices 55(8):2078–2085

    Article  CAS  Google Scholar 

  • Kim C-D, Min B-K, Jung W-S (2009a) Preparation of graphene sheets by the reduction of carbon monoxide. Carbon 47(6):1610–1612

    Article  CAS  Google Scholar 

  • Kim KS et al (2009b) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–710

    Article  CAS  Google Scholar 

  • Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22(11):3441–3450

    Article  CAS  Google Scholar 

  • Kim H et al (2011) Graphene/polyethylene nanocomposites: effect of polyethylene functionalization and blending methods. Polymer 52(8):1837–1846

    Article  CAS  Google Scholar 

  • Kuila T et al (2012) Effect of functionalized graphene on the physical properties of linear low density polyethylene nanocomposites. Polym Test 31(1):31–38

    Article  CAS  Google Scholar 

  • Layek RK, Samanta S, Nandi AK (2012) The physical properties of sulfonated graphene/poly (vinyl alcohol) composites. Carbon 50(3):815–827

    Article  CAS  Google Scholar 

  • Lee J-H, Kim SK, Kim NH (2006) Effects of the addition of multi-walled carbon nanotubes on the positive temperature coefficient characteristics of carbon-black-filled high-density polyethylene nanocomposites. Scr Mater 55(12):1119–1122

    Article  CAS  Google Scholar 

  • Li N et al (2010a) Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon 48(1):255–259

    Article  CAS  Google Scholar 

  • Li X et al (2010b) Graphene-on-silicon Schottky junction solar cells. Adv Mater 22(25):2743–2748

    Article  CAS  Google Scholar 

  • Li B et al (2011) Cu2O@ reduced graphene oxide composite for removal of contaminants from water and supercapacitors. J Mater Chem 21(29):10645–10648

    Article  CAS  Google Scholar 

  • Li X et al (2014) Preparation of polylactide/graphene composites from liquid-phase exfoliated graphite sheets. Polym Compos 35(2):396–403

    Article  CAS  Google Scholar 

  • Liao K-H et al (2011) Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl Mater Interfaces 3(7):2607–2615

    Article  CAS  Google Scholar 

  • Liao G et al (2012) Graphene oxide modified gC 3 N 4 hybrid with enhanced photocatalytic capability under visible light irradiation. J Mater Chem 22(6):2721–2726

    Article  CAS  Google Scholar 

  • Liu N et al (2008) One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv Funct Mater 18(10):1518–1525

    Article  CAS  Google Scholar 

  • Liu G, Jin W, Xu N (2015) Graphene-based membranes. Chem Soc Rev 44(15):5016–5030

    Article  CAS  Google Scholar 

  • Luo Y-B et al (2011) Graphene-polymer composite: extraction of polycyclic aromatic hydrocarbons from water samples by stir rod sorptive extraction. Anal Methods 3(1):92–98

    Article  CAS  Google Scholar 

  • Luo H et al (2017) Bacterial cellulose/graphene oxide nanocomposite as a novel drug delivery system. Curr Appl Phys 17(2):249–254

    Article  Google Scholar 

  • Lv X-J et al (2012) Hydrogen evolution from water using semiconductor nanoparticle/graphene composite photocatalysts without noble metals. J Mater Chem 22(4):1539–1546

    Article  CAS  Google Scholar 

  • Macosko C et al (1996) Compatibilizers for melt blending: Premade block copolymers. Macromolecules 29(17):5590–5598

    Article  CAS  Google Scholar 

  • Mao H-n, Wang X-g (2020) Use of in-situ polymerization in the preparation of graphene/polymer nanocomposites. New Carbon Mater 35(4):336–343

    Article  Google Scholar 

  • Mattausch A, Pankratov O (2008) Density functional study of graphene overlayers on SiC. Phys Status Solidi B 245(7):1425–1435

    Article  CAS  Google Scholar 

  • Mohammadi S et al (2013) Graphene formation by unzipping carbon nanotubes using a sequential plasma assisted processing. Carbon 52:451–463

    Article  CAS  Google Scholar 

  • Ng YH et al (2010) Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. J Phys Chem Lett 1(17):2607–2612

    Article  CAS  Google Scholar 

  • Ni Z et al (2008) Raman spectroscopy of epitaxial graphene on a SiC substrate. Phys Rev B 77(11):115416

    Article  CAS  Google Scholar 

  • Niu Z et al (2012) A leavening strategy to prepare reduced graphene oxide foams. Adv Mater 24(30):4144–4150

    Article  CAS  Google Scholar 

  • Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  • Novoselov KS et al (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200

    Article  CAS  Google Scholar 

  • Obraztsov A et al (2007) Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 45(10):2017–2021

    Article  CAS  Google Scholar 

  • Ouadil B et al (2017) Surface modification of knit polyester fabric for mechanical, electrical and UV protection properties by coating with graphene oxide, graphene and graphene/silver nanocomposites. Appl Surf Sci 414:292–302

    Article  CAS  Google Scholar 

  • Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217–224

    Article  CAS  Google Scholar 

  • Paszkiewicz S, Szymczyk A (2019) Graphene-based nanomaterials and their polymer nanocomposites. In: Nanomaterials and polymer nanocomposites. Elsevier, Netherlands, pp 177–216

    Google Scholar 

  • Pei S et al (2011) Method for preparing high-quality graphene. Chinese patent ZL. 201110282370.5

    Google Scholar 

  • Peng E et al (2012) Synthesis of manganese ferrite/graphene oxide nanocomposites for biomedical applications. Small 8(23):3620–3630

    Article  CAS  Google Scholar 

  • Potts JR et al (2011) Thermomechanical properties of chemically modified graphene/poly (methyl methacrylate) composites made by in situ polymerization. Carbon 49(8):2615–2623

    Article  CAS  Google Scholar 

  • Radich JG, Dwyer R, Kamat PV (2011) Cu2S reduced graphene oxide composite for high-efficiency quantum dot solar cells. Overcoming the redox limitations of S2–/S n 2–at the counter electrode. J Phys Chem Lett 2(19):2453–2460

    Article  CAS  Google Scholar 

  • Rafiee MA et al (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12):3884–3890

    Article  CAS  Google Scholar 

  • Rafiq R et al (2010) Increasing the toughness of nylon 12 by the incorporation of functionalized graphene. Carbon 48(15):4309–4314

    Article  CAS  Google Scholar 

  • Reina A et al (2009) Layer area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9(8):3087–3087

    Article  CAS  Google Scholar 

  • Rollings E et al (2006) Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate. J Phys Chem Solids 67(9–10):2172–2177

    Article  CAS  Google Scholar 

  • Santos CM et al (2012) Graphene nanocomposite for biomedical applications: fabrication, antimicrobial and cytotoxic investigations. Nanotechnology 23(39):395101

    Article  CAS  Google Scholar 

  • Shin HJ et al (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19(12):1987–1992

    Article  CAS  Google Scholar 

  • Sint K, Wang B, Král P (2008) Selective ion passage through functionalized graphene nanopores. J Am Chem Soc 130(49):16448–16449

    Article  CAS  Google Scholar 

  • Su Q et al (2009) Composites of graphene with large aromatic molecules. Adv Mater 21(31):3191–3195

    Article  CAS  Google Scholar 

  • Sui Z et al (2012) Green synthesis of carbon nanotube–graphene hybrid aerogels and their use as versatile agents for water purification. J Mater Chem 22(18):8767–8771

    Article  CAS  Google Scholar 

  • Wang W-P, Pan C-Y (2004) Preparation and characterization of polystyrene/graphite composite prepared by cationic grafting polymerization. Polymer 45(12):3987–3995

    Article  CAS  Google Scholar 

  • Wang Y et al (2009a) Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Appl Phys Lett 95(6):209

    Article  CAS  Google Scholar 

  • Wang H et al (2009b) Graphene oxide doped polyaniline for supercapacitors. Electrochem Commun 11(6):1158–1161

    Article  CAS  Google Scholar 

  • Wang Z et al (2010a) Laterally confined graphene nanosheets and graphene/SnO2 composites as high-rate anode materials for lithium-ion batteries. Nano Res 3(10):748–756

    Article  CAS  Google Scholar 

  • Wang H et al (2010b) Ni (OH) 2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc 132(21):7472–7477

    Article  CAS  Google Scholar 

  • Wang L et al (2017) Designed graphene-peptide nanocomposites for biosensor applications: A review. Anal Chim Acta 985:24–40

    Article  CAS  Google Scholar 

  • Wei D et al (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9(5):1752–1758

    Article  CAS  Google Scholar 

  • Wei J, Vo T, Inam F (2015) Epoxy/graphene nanocomposites–processing and properties: a review. RSC Adv 5(90):73510–73524

    Article  CAS  Google Scholar 

  • Wu Z-S et al (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4(6):3187–3194

    Article  CAS  Google Scholar 

  • Xiong Z, Zhang LL, Zhao XS (2011) Visible-light-induced dye degradation over copper-modified reduced graphene oxide. Chem Eur J 17(8):2428–2434

    Article  CAS  Google Scholar 

  • Xu Z, Gao C (2010) In situ polymerization approach to graphene-reinforced nylon-6 composites. Macromolecules 43(16):6716–6723

    Article  CAS  Google Scholar 

  • Yang X, Yu X, Liu X (2018) Obtaining a sustainable competitive advantage from patent information: a patent analysis of the graphene industry. Sustainability 10(12):4800

    Article  Google Scholar 

  • Yi M, Shen Z (2015) A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem A 3(22):11700–11715

    Article  CAS  Google Scholar 

  • Yu Q et al (2008) Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett 93(11):113103

    Article  CAS  Google Scholar 

  • Yu G et al (2011) Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett 11(7):2905–2911

    Article  CAS  Google Scholar 

  • Zaman I et al (2015) Influence of interface on epoxy/clay nanocomposites: 1. Morphology structure. Procedia Manuf 2:17–22

    Article  Google Scholar 

  • Zhang X-Y et al (2010) Graphene/TiO 2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J Mater Chem 20(14):2801–2806

    Article  CAS  Google Scholar 

  • Zhang M et al (2011) A versatile graphene-based fluorescence “on/off” switch for multiplex detection of various targets. Biosens Bioelectron 26(7):3260–3265

    Article  CAS  Google Scholar 

  • Zhang H-B et al (2012) The effect of surface chemistry of graphene on rheological and electrical properties of polymethylmethacrylate composites. Carbon 50(14):5117–5125

    Article  CAS  Google Scholar 

  • Zhang F et al (2014) Isothermal crystallization kinetics of in situ Nylon 6/graphene composites by differential scanning calorimetry. Polym Eng Sci 54(11):2610–2616

    Article  CAS  Google Scholar 

  • Zhao X et al (2010) Enhanced mechanical properties of graphene-based poly (vinyl alcohol) composites. Macromolecules 43(5):2357–2363

    Article  CAS  Google Scholar 

  • Zhao Y-G et al (2016) Fast throughput determination of 21 allergenic disperse dyes from river water using reusable three-dimensional interconnected magnetic chemically modified graphene oxide followed by liquid chromatography–tandem quadrupole mass spectrometry. J Chromatogr A 1431:36–46

    Article  CAS  Google Scholar 

  • Zhou X et al (2011) Graphene modified LiFePO 4 cathode materials for high power lithium ion batteries. J Mater Chem 21(10):3353–3358

    Article  CAS  Google Scholar 

  • Zhu Y et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924

    Article  CAS  Google Scholar 

  • Zhu M, Chen P, Liu M (2011) Graphene oxide enwrapped Ag/AgX (X= Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst. ACS Nano 5(6):4529–4536

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of MEMAR Lab at School of Chemical and Materials Engineering, NUST, Islamabad, and HEC (Pakistan) grant No: 10032/Federal/ NRPU/R&D/HEC/ 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Farrukh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Raza, A., Farrukh, S. (2021). Graphene Nanocomposites. In: Hussain, C.M., Thomas, S. (eds) Handbook of Polymer and Ceramic Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-10614-0_81-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10614-0_81-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10614-0

  • Online ISBN: 978-3-030-10614-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics