Skip to main content

Rare Earth Elements—Separation Methods Yesterday and Today

  • Chapter
  • First Online:
Applications of Ion Exchange Materials in the Environment

Abstract

Rare earth elements (REEs) belong to the group of strategic elements. Their separation together with the spectral, magnetic and coordinative properties of REEs is essential for their further applications. However, separation of individual REEs on an industrial scale is very complex. Obtaining REEs of high purity requires purification of their concentrates. This is usually achieved by precipitation of REEs such as double sulphates NaLn(SO4)2 or oxalates Ln2(C2O4)3 as well as extraction and/or ion exchange method application. Currently, the recovery of rare earth metals from secondary sources is also very important. The details connected with the rare earth element recovery from nickel–metal hydride batteries and permanent magnets as well as their separation will be described in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gueroult R, Rax JM, Fisch NJ (2018) Opportunities for plasma separation techniques in rare earth elements recycling. J Clean Prod 182:1060–1069

    Article  CAS  Google Scholar 

  2. Klinger JM (2018) Rare earth elements: Development, sustainability and policy issues. Extr Ind Soc 5:1–7

    Google Scholar 

  3. Chakhmouradian AR, Wall F (2012) Rare earth elements: Minerals, mines, magnets (and more). Elements 8:333–340

    Article  CAS  Google Scholar 

  4. Brown TJ, Shaw RA, Bide T, Petavratzi E, Raycraft ER, Walters AS (2013) World mineral production 2007–2011, British Geological Survey

    Google Scholar 

  5. Anielak AM (2000) Chemiczne i fizykochemiczne oczyszczanie ścieków. Wydawnictwo Naukowe PWN Warszawa (in Polish)

    Google Scholar 

  6. Binnemans K, Jones PT, Blanpain B, Van Gerven T, Yang Y, Walton A, Buchert M (2013) Recycling of rare earths: A critical review. J Clean Prod 51:1–22

    Article  CAS  Google Scholar 

  7. Innocenzi V, De Michelis I, Ferella F, Veglio F (2016) Rare earths from secondary sources: profitability study. Adv Environ Res 5:125–140

    Article  Google Scholar 

  8. Jha MK, Kumari A, Panda R, Rajesh Kumar J, Yoo K, Lee JY (2016) Review on hydrometallurgical recovery of rare earth metals. Hydrometallurgy 165:2–26

    Article  CAS  Google Scholar 

  9. Kanazawa Y, Kamitani M (2006) Rare earth minerals and resources in the world. J Alloys Compd 408–412:1339–1343

    Article  Google Scholar 

  10. Castor SB, Hedrick JB (2006) Rare Earth Elements. Soc Mining, Metall Explor 769–792

    Google Scholar 

  11. Aide MT, Aide C (2012) Rare earth elements: their importance in understanding Soil Genesis. ISRN Soil Sci 12:1–11

    Article  Google Scholar 

  12. Charalampides G, Vatalis KI, Apostoplos B, Ploutarch-Nikolas B (2015) Rare Earth Elements: Industrial Applications and Economic Dependency of Europe. Procedia Econ Financ 24:126–135

    Article  Google Scholar 

  13. Porowski A, Kaczor-Kurzawa D (2016) Pierwiastki ziem rzadkich (REE) w wodach termalnych: występowanie, pochodzenie, znaczenie i perspektywy badań w Polsce. Tech Poszuk Geol Geoterm Zrównoważony Rozw 1:89–102 (in Polish)

    Google Scholar 

  14. Dutta T, Kim KH, Uchimiya M, Eilhann EK, Jeon BH, Deep A, Yun ST (2016) Global demand for rare earth resources and strategies for green mining. Environ Res 150:182–190

    Article  CAS  Google Scholar 

  15. Humphries M (2013) Rare Earth Elements: The Global Supply Chain. Congr Res Serv 27

    Google Scholar 

  16. Rydel P, Nowak M (2015) Review of the major minerals of rare earth elements—gold of the 21st century. Przegląd Geol 63:348–362

    Google Scholar 

  17. Jeżowska-Trzebiatowska B, Kopacz S, Mikulski T (1976) Pierwiastki rzadkie część I Występowanie i technologia. Państwowe Wydawnictwo Naukowe, Warszawa

    Google Scholar 

  18. Haxel GB, Hedrick JB, Orris GJ (2002) Rare earth elements—critical resources for high technology. United States Geol Surv Fact Sheet 87:4

    Google Scholar 

  19. Charewicz W (1990) Pierwiastki ziem rzadkich: surowce, technologie, zastosowania: opracowanie zbiorowe. Wydawnictwa Naukowo-Techniczne, Warszawa (in Polish)

    Google Scholar 

  20. Kabata-Pendias A, Mukherjee AB (2007) Trace elements from Soil to Human. Springer, Berlin

    Book  Google Scholar 

  21. Henderson P (1984) General geochemical properties and abundances of the rare earth elements. Rare Earth Element Geochemistry. Elsevier, London, pp 1–32

    Google Scholar 

  22. Goering PL, Fisher BR, Fowler BA (1991) The Lanthanides. In: Metals and their compounds in the environment: occurrence, analysis, and biological relevance. pp 959–970

    Google Scholar 

  23. Jarosinski A (2016) Możliwości pozyskiwania metali ziem rzadkich w Polsce. Zesz Nauk Inst Gospod Surowcami Miner i Energią Pol Akad Nauk 75–88

    Google Scholar 

  24. Davris P, Balomenos E, Taxiarchou M, Panias D, Paspaliaris I (2017) Current and Alternative Routes in the Production of Rare Earth Elements. BHM Bergund Hüttenmännische Monatshefte 162:245–251

    Article  CAS  Google Scholar 

  25. Deng M, Xu C, Song W, Tang H, Liu Y, Zhang Q, Zhou Y, Feng M, Wei C (2017) REE mineralization in the Bayan Obo deposit, China: Evidence from mineral paragenesis. Ore Geol Rev 91:100–109

    Article  Google Scholar 

  26. Alonso W, Sherman E, Wallington AM, Everson TJ, Field MP, Roth FF, Kirchain RE (2012) Evaluating Rare Earth Element Availability: A Case with Revolutionary Demand from Clean Technologies. Environ Sci Technol 46:3406–3414

    Article  CAS  Google Scholar 

  27. Alonso E, Sherman AM, Wallington TJ, Everson MP, Field FR, Roth R, Kirchain RE (2012) Evaluating rare earth element availability: A case with revolutionary demand from clean technologies. Environ Sci Technol 46:3406–3414

    Article  CAS  Google Scholar 

  28. Klinger JM (2015) A historical geography of rare earth elements: From discovery to the atomic age. Extr Ind Soc 2:572–580

    Google Scholar 

  29. Bielański A (2002) Podstawy chemii nieorganicznej. Wydawnictwo Naukowe PWN, Warszawa (in Polish)

    Google Scholar 

  30. Cotton S (2006) Lanthanide and Actinide Chemistry. Chichester

    Google Scholar 

  31. Huang C (2010) Rare Earth Coordination Chemistry Fundamentals and Applications. John Wiley & Sons, Asia

    Book  Google Scholar 

  32. Cotton SA, Raithby PR (2017) Systematics and surprises in lanthanide coordination chemistry. Coord Chem Rev 340:220–231

    Article  CAS  Google Scholar 

  33. Kołodyńska D, Hubicki Z (2012) Investigation of sorption and separation of the lanthanides on the ion exchangers of various types. In: Ion Exchange Technologies A. Kilislioglu (ed) ISBN 980-953-307-139-3, str. 101-154, http://dx.doi.org/10.5772/50857

  34. Massari S, Ruberti M (2013) Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resour Policy 38:36–43

    Article  Google Scholar 

  35. Akah A (2017) Application of rare earths in fluid catalytic cracking: A review. J Rare Earths 35:941–956

    Article  CAS  Google Scholar 

  36. Gschneidner KA (2009) The rare earth crisis -the supply demand. Situation for 2010–2015. Mater Matters 6

    Google Scholar 

  37. Zhou B, Li Z, Chen C (2017) Global potential of rare earth resources and rare earth demand from clean technologies. Minerals 7:1–14

    Google Scholar 

  38. Gonzalez V, Vignati DAL, Leyval C, Giamberini L (2014) Environmental fate and ecotoxicity of lanthanides: Are they a uniform group beyond chemistry? Environ Int 71:148–157

    Article  CAS  Google Scholar 

  39. Gambogi J (2015) U.S. Geological Survey, Mineral Commodity Summaries

    Google Scholar 

  40. Gambogi J (2017) U.S. Geological Survey, Mineral Commodity Summaries

    Google Scholar 

  41. Bütikofer R (2015) Erecon: Strengthening the European rare earth supply-chain, Challenges and policy options

    Google Scholar 

  42. Sozański A (1981) Industrial methods for separation of thorium from rare earth elements. Prace Naukowe Instytutu Chemii Nieorganicznej i Pierwiastków Rzadkich Politechniki Wrocławskiej, Wrocław

    Google Scholar 

  43. Leveque A (2014) Extraction and separation of Rare Earths, EREAN Summer School Leuven University, 19 August 2014

    Google Scholar 

  44. Schüler D, Buchert M, Liu R, Dittrichn S, Merz C (2011), Study on Rare Earths and Their Recycling, Final Report for The Greens/EFA Group in the European Parliament

    Google Scholar 

  45. Umicore (2014) Rechargeable Batteries (storing energy). Retrieved from http://www.umicore.com/en/cleanTechnologies/batteries/. Accessed 20 Apr 2018

  46. Saubermacher (2014) Leistungen: Entsorgungslösungen. Retrieved from http://www.saubermacher.at/de/leistungen/#elektroaltgeraeteentsorgung. Accessed 24 Apr 2018

  47. Müller T, Friedrich B (2006) Development of a recycling process for nickel-metal hydride batteries. J Power Sources 158:1498–1509

    Article  Google Scholar 

  48. Lyman JW, Palmer GR (1995) Hydrometallurgical treatment of nickel-metal hydride battery electrodes. In: In Third International Symposium on Recycling of Metals and Engineered Materials. November 12–15. Point Clear, Alabama (USA) 131–144

    Google Scholar 

  49. Yoshida T, Ono H, Shirai R (1995) Recycling of used Ni-MH rechargeable batteries. Miner Met Mater Soc 145–152

    Google Scholar 

  50. Zhang P, Yokoyama T, Itabashi O, Wakui Y, Suzuki TM, Inoue K (1998) Hydrometallurgical process for recovery of metal values from spent nickel-metal hydride secondary batteries. J Power Sources 50:61–75

    CAS  Google Scholar 

  51. Zhang P, Yokoyama T, Itabashi O, Wakui Y, Suzuki TM, Inoue K (1999) Recovery of metal values from spent nickel-metal hydride rechargeable batteries. J Power Sources 77:116–122

    Article  CAS  Google Scholar 

  52. Li L, Xu S, Ju Z, Wu F (2009) Recovery of Ni, Co and rare earths from spent Ni-metal hydride batteries and preparation of spherical Ni(OH)2. Hydrometallurgy 100:41–46

    Article  CAS  Google Scholar 

  53. Gasser MS, Aly MI (2013) Separation and recovery of rare earth elements from spent nickel-metal-hydride batteries using synthetic adsorbent. Int J Miner Process 121:31–38

    Article  CAS  Google Scholar 

  54. Kanamori T, Matsuda M, Miyake M (2009) Recovery of rare metal compounds from nickel-metal hydride battery waste and their application to CH4 dry reforming catalyst. J Hazard Mater 169:240–245

    Article  CAS  Google Scholar 

  55. Provazi K, Campos BA, Espinosa DCR, Tenório JAS (2011) Metal separation from mixed types of batteries using selective precipitation and liquid-liquid extraction techniques. Waste Manag 31:59–64

    Article  CAS  Google Scholar 

  56. Larsson K, Ekberg C, Odegaard-Jensen A (2011) Metal separation after selective dissolution of nickel metal hydride batteries. 19th International Solvent Extraction Conference (ISEC2011), 3-7 October 2011. Santiago, Chili, pp 38–45

    Google Scholar 

  57. Becker K, Chmielarz A, Szołomicki Z, Gotfryd L, Piwowońska J, Pietek G, Pokora M (2016) Hydrometalurgiczny recykling akumulatorów Ni-MH i Li-ion. Rudy i Met Nieżelazne Recykling 61(6):235–243 (in Polish)

    Google Scholar 

  58. Coey JMD (2012) Permanent magnets: Plugging the gap. Scr Mater 67:524–529. https://doi.org/10.1016/j.scriptamat.2012.04.036

    Article  CAS  Google Scholar 

  59. Hubicka H, Drobek D (2000) Studies on separation of intermediate and heavy lanthanide complexes with iminodiacetic acid on anion-exchangers. Chem Environ Res 9:245–257

    Google Scholar 

  60. Hubicka H, Kołodyńska D (2000) Study on separation of lanthanum from praseodymium complexes with IMDA by gel and macroporous anion-exchangers. J Rare Earths 18:90–96

    Google Scholar 

  61. Hubicka H, Kołodyńska D (2004) Separation of rare earth element complexes with trans-1,2-diaminocyclohexane-N, N, N’, N’-tetraacetic acid on the polyacrylate anion-exchangers. Hydrometallurgy 71:343–350

    Article  CAS  Google Scholar 

  62. Hubicka H, Kołodyńska D (2005) Effects of polar organic solvent on the separation of the Y(edta)-/Nd(edta)- complexes on polyacrylic anion exchangers. J Rare Earths 23:124–128

    Google Scholar 

  63. Hubicka H, Kołodyńska D (2008) Application of monodisperse anion exchangers in sorption and separation of Y3+ from Nd3+ complexes with DCTA. J Rare Earths 26:619–625

    Article  Google Scholar 

  64. Kołodyńska D, Hubicka H, Hubicki Z (2008) Sorption of heavy metal ions from aqueous solutions in the presence of EDTA on monodisperse anion exchangers. Desalination 227:150–166

    Article  Google Scholar 

  65. Hubicka H, Kołodyńska D (2004) Studies of applicability of strongly and weakly basic polystyrene and polyacrylate anion exchangers for separation of Y(edta)- from Sm(edta)- complexes. Chem Environ Res 13:73–85

    Google Scholar 

  66. Hubicka H, Kołodyńska D (2004) Separation of rare-earth element complexes with trans-1,2-diaminocyclohexane-N, N, N′, N′-tetraacetic acid on polyacrylate anion exchangers. Hydrometallurgy 71:343–350

    Article  CAS  Google Scholar 

  67. Hubicki Z (1990) Studies on selective separation of Sc(III) from rare earth elements on selective ion exchangers. Hydrometallurgy 23:319–331

    Article  CAS  Google Scholar 

  68. Hubicka H, Hubicki Z (1992) Studies on separation of pair Y(III)-Nd(III) on chelating ion exchangers of aminoacid type using aminopolyacetic acids as eluents. Hung J Ind Chem 20:249–254

    CAS  Google Scholar 

  69. Wang YG, Xiong Y, Meng SL, Li DQ (2004) Separation of yttrium from heavy lanthanide by CA-100 using the complexing agent. Talanta 63:239–243

    Article  CAS  Google Scholar 

  70. Izatt SR, McKenzie JS, Izatt NE, Bruening RL, Krakowiak KE, Izatt RM (2016) Molecular recognition technology: a green chemistry. Process for separation of individual rare earth metals, White Pap Sep Rare Earth Elem

    Google Scholar 

  71. Dong Y, Sun X, Wang Y, Chai Y (2015) The development of an extraction strategy based on EHEHP-type functional ionic liquid for heavy rare earth element separation. Hydrometallurgy 157:256–260

    Article  CAS  Google Scholar 

  72. Quinn JE, Soldenhoff KH, Stevens GW (2017) Solvent extraction of rare earths using a bifunctional ionic liquid. Part 1: Interaction with acidic solutions. Hydrometallurgy 169:306–313

    Article  CAS  Google Scholar 

  73. Quinna JE, Soldenhoff KH, Stevens GW (2017) Solvent extraction of rare earth elements using a bifunctional ionic liquid. Part 2: Separation of rare earth elements. Hydroamtealrgy 169:621–629

    Article  Google Scholar 

  74. Wang W, Yang HL, Cui HM, Zhang DL, Liu Y, Chen J (2011) Application of bifunctionalionic liquid extractants [A336][CA-12] and [A336][CA-100] to the lanthanum extraction and separation from rare earths in the chloride medium. Ind Eng Chem Res 50:7534–7541

    Article  CAS  Google Scholar 

  75. Rout A, Kotlarska J, Dehaen W, Binnemans K (2013) Liquid–liquid extraction of neodymium(III) by dialkylphosphate ionic liquids from acidic medium: the importance of the ionic liquid cation. Phys Chem Chem Phys 15:16533–16541

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorota Kołodyńska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kołodyńska, D., Fila, D., Gajda, B., Gęga, J., Hubicki, Z. (2019). Rare Earth Elements—Separation Methods Yesterday and Today. In: Inamuddin, Ahamed, M., Asiri, A. (eds) Applications of Ion Exchange Materials in the Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-10430-6_8

Download citation

Publish with us

Policies and ethics