Skip to main content

Abstract

The semantic web aims at making web content interpretable. It is no less than offering knowledge representation at web scale. The main ingredients used in this context are the representation of assertional knowledge through graphs, the definition of the vocabularies used in graphs through ontologies, and the connection of these representations through the web. Artificial intelligence techniques and, more specifically, knowledge representation techniques, are put to use and to the test by the semantic web. Indeed, they have to face typical problems of the web: scale, heterogeneity, incompleteness, and dynamics. This chapter provides a short presentation of the state of the semantic web and refers to other chapters concerning those techniques at work in the semantic web.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    WorldWide Web Consortium: the organisation in charge of recommending web technologies.

  2. 2.

    Sources: http://stats.lod2.eu/ and http://lov.okfn.org.

References

  • Abiteboul S, Manolescu I, Rigaux P, Rousset MC, Senellart P (2011) Web data management. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Adjiman P, Chatalic P, Goasdoué F, Rousset MC, Simon L (2006) Distributed reasoning in a peer-to-peer setting: application to the semantic web. J Artif Intell Res 25:269–314

    Article  MathSciNet  MATH  Google Scholar 

  • Al-Bakri M, Atencia M, David J, Lalande S, Rousset M (2016) Uncertainty-sensitive reasoning for inferring sameAs facts in linked data. In: Proceedings of the 22nd European conference on artificial intelligence (ECAI), The Hague (NL), pp 698–706

    Google Scholar 

  • Alkhateeb F, Baget JF, Euzenat J (2008) Constrained regular expressions in SPARQL. In: Arabnia H, Solo A (eds) Proceedings of the international conference on semantic web and web services (SWWS), Las Vegas (NV US), pp 91–99

    Google Scholar 

  • Alkhateeb F, Baget JF, Euzenat J (2009) Extending SPARQL with regular expression patterns (for querying RDF). J Web Semant 7(2):57–73

    Article  Google Scholar 

  • Antoniou G, van Harmelen F (2008) A semantic web primer, 2nd edn. The MIT Press, Cambridge

    Google Scholar 

  • Artale A, Calvanese D, Kontchakov R, Zakharyaschev M (2009) The DL-Lite family and relations. J Artif Intell Res 36:1–69

    Article  MathSciNet  MATH  Google Scholar 

  • Atencia M, David J, Euzenat J (2014) Data interlinking through robust linkkey extraction. In: Proceedings of the 21st European conference on artificial intelligence (ECAI), Prague (CZ), pp 15–20

    Google Scholar 

  • Baader F, Calvanese D, McGuinness D, Nardi D, Patel-Schneider PF (eds) (2003) The description logic handbook: theory, implementation, and applications. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Baget J, Leclère M, Mugnier M, Salvat E (2011) On rules with existential variables: walking the decidability line. Artif Intell 175(9–10):1620–1654

    Article  MathSciNet  MATH  Google Scholar 

  • Barbieri DF, Braga D, Ceri S, Della Valle E, Grossniklaus M (2010) C-SPARQL: a continuous query language for RDF data streams. Int J Semant Comput 4(1):3–25

    Google Scholar 

  • Beckett D (2009) OWL 2 web ontology language document overview. Recommendation, W3C. http://www.w3.org/TR/owl2-overview/

  • Beck H, Dao-Tran M, Eiter T, Fink M (2015) LARS: a logic-based framework for analyzing reasoning over streams. In: Proceedings of the 29th conference on artificial intelligence (AAAI), Austin (TX US), pp 1431–1438

    Google Scholar 

  • Berners-Lee T (1998) Design issue: what the semantic web can represent. http://www.w3.org/DesignIssues/RDFnot.html

  • Berners-Lee T (2006) Design issue: linked data. http://www.w3.org/DesignIssues/LinkedData

  • Berners-Lee T, Fielding R, Masinter L (1998) Uniform resource identifiers (URI): generic syntax. RFC 2396, IETF. http://www.ietf.org/rfc/rfc2396.txt

  • Bizer C, Lehmann J, Kobilarov G, Auer S, Becker C, Cyganiak R, Hellmann S (2009) DBpedia: a crystallization point for the web of data. J Web Semant 7(3):154–165

    Article  Google Scholar 

  • Boley H, Hallmark G, Kifer M, Paschke A, Polleres A, Reynolds D (2013) RIF core dialect. Recommendation, W3C. http://www.w3.org/TR/rif-core/

  • Borgida A, Serafini L (2003) Distributed description logics: assimilating information from peer sources. J Data Semant I:153–184

    Article  MATH  Google Scholar 

  • Bouquet P, Giunchiglia F, van Harmelen F, Serafini L, Stuckenschmidt H (2004) Contextualizing ontologies. J Web Semant 1(1):325–343

    Article  Google Scholar 

  • Brickley D, Guha R (2004) RDF vocabulary description language 1.0: RDF schema. Recommendation, W3C. http://www.w3.org/TR/rdf-schema/

  • Calì A, Gottlob G, Lukasiewicz T (2009a) A general datalog-based framework for tractable query answering over ontologies. In: International conference on principles of database systems (PODS), pp 77–86

    Google Scholar 

  • Calì A, Gottlob G, Lukasiewicz T (2009b) A general datalog-based framework for tractable query answering over ontologies. In: Proceedings of the 28th ACM principle of database systems conference (PODS), Providence (RI US), pp 77–86

    Google Scholar 

  • Calvanese D, De Giacomo G, Lembo D, Lenzerini M, Rosati R (2007) Tractable reasoning and efficient query answering in description logics: the DL-Lite family. J Autom Reason 39(3):385–429

    Article  MathSciNet  MATH  Google Scholar 

  • Capadisli S, Auer S, Ngonga Ngomo A (2015) Linked SDMX data: path to high fidelity statistical linked data. Semant Web 6(2):105–112

    Article  Google Scholar 

  • Carothers G, Seaborne A (2014) RDF 1.1 N-triples – a line-based syntax for an RDF graph. Recommendation, W3C. http://www.w3.org/TR/n-triples/

  • Chekol M, Euzenat J, Genevès P, Layaïda N (2012) SPARQL query containment under SHI axioms. In: Proceedings of the 26th American national conference on artificial intelligence (AAAI), Toronto (ONT CA), pp 10–16

    Google Scholar 

  • Cyganiak R, Wood D, Lanthaler M (2014) RDF 1.1 concepts and abstract syntax. Recommendation, W3C. http://www.w3.org/TR/rdf11-concepts/

  • David J, Guillet F, Briand H (2007) Association rule ontology matching approach. Int J Semant Web Inf Syst 3(2):27–49

    Article  Google Scholar 

  • David J, Euzenat J, Scharffe F, Trojahn C (2011) The Alignment API 4.0. Semant Web J 2(1):3–10

    Google Scholar 

  • de Bruijn J, Welty C (2013) RIF RDF and OWL compatibility. Recommendation, W3C. http://www.w3.org/TR/rif-rdf-owl/

  • Dean M, Schreiber G (eds) (2004) OWL web ontology language reference. Recommendation, W3C. http://www.w3.org/TR/owl-ref/

  • Doan AH, Madhavan J, Domingos P, Halevy A (2004) Ontology matching: a machine learning approach. In: Staab S, Studer R (eds) Handbook on ontologies. Springer Verlag, Berlin (DE), chap 18, pp 385–404

    Google Scholar 

  • Dousson C, Gaborit P, Ghallab M (1993) Situation recognition: representation and algorithms. In: Proceedings of the 13th international joint conference on artificial intelligence (IJCAI), Chambéry (FR), pp 166–174

    Google Scholar 

  • Ehrig M, Staab S, Sure Y (2005) Bootstrapping ontology alignment methods with APFEL. In: Proceedings of the 4th international semantic web conference (ISWC), Galway (IE). Lecture notes in computer science, vol 3729. pp 186–200

    Google Scholar 

  • Eiter T, Ianni G, Lukasiewicz T, Schindlauer R, Tompits H (2008) Combining answer set programming with description logics for the semantic web. Artif Intell 172(12–13):1495–1539

    Article  MathSciNet  MATH  Google Scholar 

  • Euzenat J (1996) Hytropes: a www front-end to an object knowledge management system. In: Proceedings of the 10th demonstration track on knowledge acquisition workshop (KAW), Banff (CA), pp (62)1–12

    Google Scholar 

  • Euzenat J (ed) (2002) Research challenges and perspectives of the semantic web. EU-NSF Strategic report, ERCIM, Sophia Antipolis (FR). http://www.ercim.org/EU-NSF/semweb.html

  • Euzenat J (2015) Revision in networks of ontologies. Artif Intell 228:195–216

    Article  MathSciNet  MATH  Google Scholar 

  • Euzenat J, Shvaiko P (2013) Ontology matching, 2nd edn. Springer, Heidelberg

    Book  MATH  Google Scholar 

  • Euzenat J, Stuckenschmidt H (2003) The ‘family of languages’ approach to semantic interoperability. In: Omelayenko B, Klein M (eds) Knowledge transformation for the semantic web, IOS Press, Amsterdam (NL), pp 49–63

    Google Scholar 

  • Farquhar A, Fikes R, Pratt W, Rice J (1995) Collaborative ontology construction for information integration. Technical Report 63, Knowledge system laboratory, Stanford university, Stanford (CA, US). ftp://ksl.stanford.edu/pub/KSL_Reports/KSL-95-63.ps

  • Fensel D, Decker S, Erdmann M, Studer R (1998) Ontobroker: the very high idea. In: Proceedings of the 11th international Florida artificial intelligence research society conference (FLAIRS), Sanibel Island (FL, US), pp 131–135

    Google Scholar 

  • Fensel D, Hendler J, Lieberman H, Wahlster W (eds) (2003) Spinning the semantic web: bringing the World Wide Web to its full potential. The MIT Press, Cambridge

    Google Scholar 

  • Gandon F, Schreiber G (2014) RDF 1.1 XML syntax. Recommendation, W3C. http://www.w3.org/TR/rdf-syntax-grammar/

  • Ghilardi S, Lutz C, Wolter F (2006) Did I damage my ontology? a case for conservative extensions in description logics. In: Proceedings of the 10th international conference on principles of knowledge representation and reasoning, Lake District (UK), pp 187–197

    Google Scholar 

  • Glimm B, Ogbuji C (2013) SPARQL 1.1 entailment regimes. Recommendation, W3C. http://www.w3.org/TR/sparql11-entailment

  • Glimm B, Horrocks I, Motik B, Stoilos G, Wang Z (2014) HermiT: an OWL 2 reasoner. J Autom Reason 53(3):245–269

    Article  MATH  Google Scholar 

  • Gmati M, Atencia M, Euzenat J (2016) Tableau extensions for reasoning with link keys. In: Proceedings of the 11th international workshop on ontology matching, Kobe (JP), pp 37–48

    Google Scholar 

  • Grosof B, Horrocks I, Volz R, Decker S (2003) Description logic programs: combining logic programs with description logic. In: Proceedings of the 12th World Wide Web conference, Budapest (HU), pp 48–57

    Google Scholar 

  • Harris S, Seaborne A (2013) SPARQL 1.1 query language. Recommendation, W3C. http://www.w3.org/TR/sparql11-query

  • Hartig O, Pirró G (2016) SPARQL with property paths on the web. Semant Web J

    Google Scholar 

  • Hayes P, Patel-Schneider P (2014) RDF semantics. Recommendation, W3C. http://www.w3.org/TR/rdf11-mt/

  • Heath T, Bizer C (2011) Linked data: evolving the web into a global data space. Morgan & Claypool, Milton Keynes

    Google Scholar 

  • Hitzler P, Krötzsch M, Rudolph S (2009) Foundations of semantic web technologies. Chapman & Hall/CRC, London

    Book  Google Scholar 

  • Hogan A, Harth A, Polleres A (2009) Scalable authoritative OWL reasoning for the web. Int J Semant Web Inf Syst 5(2):49–90

    Article  Google Scholar 

  • Horrocks I, Sattler U (2007) A tableau decision procedure for SHOIQ. J Autom Reason 39(3):249–276

    Google Scholar 

  • Horrocks I, Sattler U, Tobies S (2000) Practical reasoning for very expressive description logics. Log J IGPL 8(3):239–264

    Article  MathSciNet  MATH  Google Scholar 

  • Horrocks I, Patel-Schneider P, van Harmelen F (2003) From SHIQ and RDF to OWL: the making of a web ontology language. J Web Semant 1(1):7–26

    Article  Google Scholar 

  • Horrocks I, Patel-Schneider P, Boley H, Tabet S, Grosof B, Dean M (2004) SWRL: a semantic web rule language combining OWL and RuleML. http://www.w3.org/Submission/SWRL/

  • Hustadt U, Motik B, Sattler U (2007) Reasoning in description logics by a reduction to disjunctive datalog. J Autom Reason 39(3):351–384

    Article  MathSciNet  MATH  Google Scholar 

  • Hustadt U, Motik B, Sattler U (2008) Deciding expressive description logics in the framework of resolution. Inf Comput 206(5):579–601

    Article  MathSciNet  MATH  Google Scholar 

  • Janowicz K, van Harmelen F, Hendler J, Hitzler P (2015) Why the data train needs semantic rails. AI Mag 36(1):5–14

    Article  Google Scholar 

  • Jimenez Ruiz E, Cuenca Grau B, Horrocks I, Berlanga R (2009) Ontology integration using mappings: towards getting the right logical consequences. In: Proceedings of the 6th European semantic web conference (ESWC), Hersounisous (GR). Lecture notes in computer science, vol 5554, pp 173–188

    Google Scholar 

  • Kalfoglou Y, Schorlemmer M (2003) Ontology mapping: the state of the art. Knowl Eng Rev 18(1):1–31

    Article  MATH  Google Scholar 

  • Lassila O, Swick R (1999) Resource description framework (RDF) model and syntax specification. Recommendation, W3C. http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

  • Levy A, Rousset MC (1998) Combining Horn rules and description logics in CARIN. Artif Intell 104(1–2):165–209

    Article  MathSciNet  MATH  Google Scholar 

  • Luke S, Spector L, Rager D, Hendler J (1997) Ontology-based web agents. In: Proceedings of the 1st international conference on autonomous agents, pp 59–66

    Google Scholar 

  • Lutz C, Walther D, Wolter F (2007) Conservative extensions in expressive description logics. In: Proceedings of the 20th international joint conference on artificial intelligence, Hyderabad (IN), pp 453–458

    Google Scholar 

  • Mao M, Peng Y, Spring M (2010) An adaptive ontology mapping approach with neural network based constraint satisfaction. J Web Semant 8(1):14–25

    Article  Google Scholar 

  • Meilicke C, Stuckenschmidt H, Tamilin A (2009) Reasoning support for mapping revision. J Log Comput 19(5):807–829

    Article  MathSciNet  MATH  Google Scholar 

  • Miles A, Bechhofer S (2009) SKOS simple knowledge organization system: reference. Recommendation, W3C. http://www.w3.org/TR/skos-reference

  • Mossakowski T, Codescu M, Neuhaus F, Kutz O (2015) The distributed ontology, modeling and specification language - DOL. In: Koslow A, Buchsbaum A (eds) The road to universal logic: Festschrift for the 50th birthday of Jean-Yves Béziau volume II. Springer, pp 489–520

    Google Scholar 

  • Motik B, Rosati R (2010) Reconciling description logics and rules. J ACM 57(5):

    Google Scholar 

  • Motik B, Cuenca Grau B, Horrocks I, Wu Z, Fokoue A, Lutz C (2009a) OWL 2 web ontology language profiles. Recommendation, W3C. http://www.w3.org/TR/owl2-profiles/

  • Motik B, Patel-Schneider P, Cuenca Grau B (2009b) OWL 2 web ontology language direct semantics. Recommendation, W3C. http://www.w3.org/TR/owl2-direct-semantics/

  • Motik B, Patel-Schneider P, Parsia B (2009c) OWL 2 web ontology language structural specification and functional-style syntax. Recommendation, W3C. http://www.w3.org/TR/owl2-syntax/

  • Motik B, Shearer R, Horrocks I (2009d) Hypertableau reasoning for description logics. J Artif Intell Res 36:165–228

    Article  MathSciNet  MATH  Google Scholar 

  • Ngonga Ngomo A, Auer S (2011) LIMES - a time-efficient approach for large-scale link discovery on the web of data. In: Proceedings of the 22nd international joint conference on artificial intelligence (IJCAI), Barcelona (ES), pp 2312–2317

    Google Scholar 

  • Pan R, Ding Z, Yu Y, Peng Y (2005) A Bayesian network approach to ontology mapping. In: Proceedings of the 4th international semantic web conference (ISWC), Galway (IE). Lecture notes in computer science, vol 3729, pp 563–577

    Google Scholar 

  • Patel-Schneider P, Hayes P, Horrocks I (2004) OWL web ontology language semantics and abstract syntax. Recommendation, W3C. http://www.w3.org/TR/owl-absyn/

  • Pérez J, Arenas M, Gutierrez C (2009) Semantics and complexity of SPARQL. ACM Trans Database Syst 34(3):16

    Article  Google Scholar 

  • Pérez J, Arenas M, Gutierrez C (2010) nSPARQL: a navigational language for RDF. J Web Semant 8(4):255–270

    Article  Google Scholar 

  • Prud’hommeaux E, Seaborne A (2008) SPARQL query language for RDF. Recommendation, W3C. http://www.w3.org/TR/rdf-sparql-query

  • Phrer J, Heymans S, Eiter T (2010) Dealing with inconsistency when combining ontologies and rules using DL-programs. In: Proceedings of the 7th extended semantic web conference (ESWC), Hersounissos (GR), pp 193–197

    Google Scholar 

  • Schlobach S (2005) Debugging and semantic clarification by pinpointing. In: Proceedings of the 2nd European semantic web conference (ESWC), Heraklion (GR), pp 226–240

    Google Scholar 

  • Serafini L, Tamilin A (2005) DRAGO: distributed reasoning architecture for the semantic web. In: Proceedings of the 2nd European semantic web conference (ESWC), Hersounisous (GR). Lecture notes in computer science, vol 3532, pp 361–376

    Google Scholar 

  • Sirin E, Parsia B (2007) SPARQL-DL: SPARQL query for OWL-DL. In: Proceedings of the 3rd OWL experiences and directions workshop (OWLED), Innsbruck (AT)

    Google Scholar 

  • Sirin E, Parsia B, Grau BC, Kalyanpur A, Katz Y (2007) Pellet: a practical OWL-DL reasoner. J Web Semant 5(2):51–53

    Article  Google Scholar 

  • Stoilos G, Stamou G, Pan J (2010) Fuzzy extensions of owl: logical properties and reduction to fuzzy description logics. Int J Approx Reason 51(6):656–679

    Article  MathSciNet  MATH  Google Scholar 

  • Stumme G, Mädche A (2001) FCA-Merge: bottom-up merging of ontologies. In: Proceedings of the 17th international joint conference on artificial intelligence (IJCAI), Seattle (WA, US), pp 225–234

    Google Scholar 

  • Symeonidou D, Armant V, Pernelle N, Saïs F (2014) Sakey: scalable almost key discovery in RDF data. In: Proceedings of the 13th international semantic web conference (ISWC), Riva del Garda (IT), pp 33–49

    Google Scholar 

  • Tsarkov D, Horrocks I (2006) FaCT++ description logic reasoner: system description. In: Proceedings of the 3rd international joint conference (IJCAR), pp 292–297

    Google Scholar 

  • Voltz R (2004) Web ontology reasoning with logic databases. Ph.D. thesis, Universitt Fridericiana zu Karlsruhe

    Google Scholar 

  • Volz J, Bizer C, Gaedke M, Kobilarov G (2009) Discovering and maintaining links on the web of data. In: Proceedings of the 8th international semantic web conference (ISWC), Chantilly (VA, US). Lecture notes in computer science, vol 5823, pp 650–665

    Google Scholar 

  • Xu L, Embley D (2003) Discovering direct and indirect matches for schema elements. In: Proceedings of the 8th international conference on database systems for advanced applications (DASFAA), Kyoto (JP), pp 39–46

    Google Scholar 

  • Zimmermann A, Euzenat J (2006) Three semantics for distributed systems and their relations with alignment composition. In: Proceedings of the 5th conference on international semantic web conference (ISWC), Athens (GA, US), pp 16–29

    Google Scholar 

  • Zimmermann A, Le Duc C (2008) Reasoning on a network of aligned ontologies. In: Proceedings of the 2nd international conference on web reasoning and rule systems (RR), Karlsruhe (DE), pp 43–57

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Euzenat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Euzenat, J., Rousset, MC. (2020). Semantic Web. In: Marquis, P., Papini, O., Prade, H. (eds) A Guided Tour of Artificial Intelligence Research. Springer, Cham. https://doi.org/10.1007/978-3-030-06170-8_6

Download citation

Publish with us

Policies and ethics