Skip to main content

Artificial Intelligence and High-Level Cognition

  • Chapter
  • First Online:
A Guided Tour of Artificial Intelligence Research

Abstract

Artificial intelligence (AI) and cognitive science (CS) both investigate information processing, but with a different focus: AI aims to build problem solving machines, i.e., systems capable of solving diverse problems in an efficient and effective way while CS analyzes human cognition. Both approaches increase an understanding of the foundations, methods, and strategies that can be employed to perform in a natural or artificial environment. This chapter focuses on high-level cognition, i.e., cognitive processes that are related to reasoning, decision making, and problem solving. After an introduction to the core principles, intersections, and differences between both fields, some central psychological findings are presented. In a next step cognitive theories for high-level cognition are introduced. While the architecture of cognition has an impact too, main approaches for cognitive modeling from cognitive architectures to multinomial processing trees are analyzed. Current challenges conclude the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson JR (1983) The architecture of cognition. Hillsdale, NJ, US

    Google Scholar 

  • Anderson JR (2007) How can the human mind occur in the physical universe? Oxford University Press, New York

    Google Scholar 

  • Bara BG, Bucciarelli M, Lombardo V (2001) Model theory of deduction: a unified computational approach. Cogn Sci 25:839–901

    Article  Google Scholar 

  • Baral C (2003) Knowledge representation, reasoning and declarative problem solving. University Press, Cambridge

    Book  MATH  Google Scholar 

  • Bauer MI, Johnson-Laird PN (1993) How diagrams can improve reasoning. Psychol Sci 4:372–378

    Article  Google Scholar 

  • Beller S, Spada H (2001) Denken. In: Strube G (ed) Wörterbuch der Kognitionswissenschaft. Klett-Cotta, Stuttgart

    Google Scholar 

  • Benferhat S, Bonnefon J, Neves RDS (2005) An overview of possibilistic handling of default reasoning, with experimental studies. Synthese 146(1–2):53–70

    Article  MathSciNet  MATH  Google Scholar 

  • Bennati S, Brüssow S, Ragni M, Konieczny L (2014) Gestalt effects in planning: rush-hour as an example. In: Bello P, Guarini M, McShane M, Scassellati B (eds) Proceedings of the 36th annual conference of the cognitive science society. Cognitive Science Society, Austin, TX, pp 1234–1240

    Google Scholar 

  • Bonnefon J (2004) Reinstatement, floating conclusions, and the credulity of mental model reasoning. Cogn Sci 28(4):621–631

    Article  Google Scholar 

  • Bonnefon J (2013) Formal models of reasoning in cognitive psychology. Argum Comput 4(1):1–3. https://doi.org/10.1080/19462166.2013.767559

  • Bonnefon J, Girotto V, Legrenzi P (2012) The psychology of reasoning about preferences and unconsequential decisions. Synthese 185(Supplement-1):27–41

    Google Scholar 

  • Braine MDS, O’Brien DP (1998) Mental logic. Erlbaum, Mahwah

    Book  Google Scholar 

  • Busemeyer JR, Bruza PD (2012) Quantum models of cognition and decision. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Byrne RMJ (1989) Suppressing valid inferences with conditionals. Cognition 31:61–83

    Article  Google Scholar 

  • Byrne RMJ (2002) Mental models and counterfactual thoughts about what might have been. Trends Cogn Sci 6(10):426–431

    Article  Google Scholar 

  • Byrne RMJ (2007) The rational imagination: how people create alternatives to reality. MIT Press, Cambridge

    Google Scholar 

  • Carpenter PA, Just MA, Shell P (1990) What one intelligence test measures: a theoretical account of the processing in the raven progressive matrices test. Psychol Rev 97(3):404–431

    Article  Google Scholar 

  • Chater N, Manning CD (2006) Probabilistic models of language processing and acquisition. Trends Cogn Sci 10:335–344

    Article  Google Scholar 

  • Chu Y, MacGregor JN (2011) Human Performance on insight problem solving: a review. J Probl Solving 3(2):119–150

    Google Scholar 

  • Cirillo S, Ström V (2010) An anthropomorphic solver for raven’s progressive matrices. Master’s thesis, Chalmers University of Technology, Department of Applied Information Technology, SE-41296 Goeteborg, Sweden

    Google Scholar 

  • Correa W, Prade H, Richard G (2012) When intelligence is just a matter of copying. In: Proceedings of the 20th European conference on artificial intelligence. IOS Press, Amsterdam, The Netherlands, ECAI’12, pp 276–281

    Google Scholar 

  • Cronin M, Gonzalez C, Sterman JD (2009) Why don’t well-educated adults understand accumulation? a challenge to researchers, educators and citizens. Organ Behav Hum Decis Process 23(1):108

    Google Scholar 

  • Dietz EA, Hölldobler S, Ragni M (2012) A computational approach to the suppression task. In: Miyake N, Peebles D, Cooper RP (eds) Proceedings of the 34th annual conference of the cognitive science society. Cognitive science society, Austin, TX, pp 1500–1505

    Google Scholar 

  • Dietz EA, Hölldobler S, Höps R (2015) A computational logic approach to human spatial reasoning. In: 2015 IEEE symposium series on computational intelligence. IEEE, pp 1627–1634

    Google Scholar 

  • Dixon JE, Byrne RMJ (2011) “if only” counterfactual thoughts about exceptional actions. Mem Cogn 39(7):1317–1331

    Google Scholar 

  • Dörner D, Kreuzig HW, Reither F, Stäudel T (1983) Lohhausen. Vom Umgang mit Unbestimmtheit und Komplexität, Huber, Bern

    Google Scholar 

  • Douven I (2011) Abduction. In: Zalta EN (ed) The stanford encyclopedia of philosophy

    Google Scholar 

  • Dubois D, Fargier H, Bonnefon J (2008) On the qualitative comparison of decisions having positive and negative features. J Artif Intell Res 32:385–417

    Article  MathSciNet  MATH  Google Scholar 

  • Duncker K (1945) On problem-solving. Psychological Monographs ix(58):113

    Google Scholar 

  • Eliasmith C (2013) How to build a brain: a neural architecture for biological cognition. Oxford University Press, Oxford

    Book  Google Scholar 

  • Evans TG (1968) A program for the solution of a class of geometric-analogy intelligence-test questions. In: Minsky ML (ed) Semantic information processing. MIT Press, Cambridge, MA, chap 5, pp 271–351

    Google Scholar 

  • Falkenhainer B, Forbus KD, Gentner D (1986) The structure-mapping engine. Report Department of Computer Science, University of Illinois at Urbana-Champaign

    Google Scholar 

  • Fauconnier G, Turner M (2008) The way we think: conceptual blending and the mind’s hidden complexities. Basic Books, New York

    Google Scholar 

  • Flake GW, Baum EB (2002) Rush Hour is PSPACE-complete, or why you should generously tip parking lot attendant. Theor Comput Sci 270:895–911

    Article  MathSciNet  MATH  Google Scholar 

  • Forbus K, Usher J, Lovett A, Lockwood K, Wetzel J (2008) CogSketch: open-domain sketch understanding for cognitive science research and for education. In: Alvarado C, Cani MP (eds) Proceedings of the fifth eurographics workshop on sketch-based interfaces and modeling

    Google Scholar 

  • Foundation S (1978) Cognitive science 1978: Report of the state of the art committee. http://csjarchive.cogsci.rpi.edu/misc/CognitiveScience1978_OCR.pdf

  • Frensch PA, Funke J (eds) (1995) Complex problem solving: the European perspective. Lawrence Erlbaum, Hillsdale, NJ

    Google Scholar 

  • Funke J (2006) Lösen komplexer Probleme. In: Funke J, Frensch P (eds) Handbuch der Allgemeinen Psychologie - Kognition. Handbuch der Psychologie, Hogrefe, Göttingen, pp 439–445

    Google Scholar 

  • Gentner D (1983) Structure-mapping: a theoretical framework for analogy. Cogn Psychol 7:155–170

    Google Scholar 

  • Gentner D, Holyoak KJ, Kokinov BN (2001) The analogical mind: perspectives from cognitive science. Bradford Books, MIT Press, Cambridge, MA

    Book  Google Scholar 

  • Gigerenzer G, Selten R (2002) Bounded rationality: the adaptive toolbox. MIT Press, Cambridge

    Book  Google Scholar 

  • Gilhooly KJ, Murphy P (2005) Differentiating insight from non-insight problems. Think Reason 11(3):279–302

    Article  Google Scholar 

  • Goodwin GP, Johnson-Laird PN (2005) Reasoning about relations. Psychol Rev 112:468–493

    Article  Google Scholar 

  • Greeno JG, Simon HA (1988) Problem solving and reasoning. Technical report, University of Pittsburgh

    Google Scholar 

  • Griffiths TL, Tenenbaum JB (2005) Structure and strength in causal induction. Cogn Psychol 51:354–384

    Article  Google Scholar 

  • Griffiths TL, Tenenbaum JB (2007) From mere coincidences to meaningful discoveries. Cognition 103(2):180–226

    Article  Google Scholar 

  • Griffiths TL, Tenenbaum JB (2011) Predicting the future as Bayesian inference: people combine prior knowledge with observations when estimating duration and extent. J Exp Psychol: Gen 140(4):725

    Google Scholar 

  • Hagmayer Y, Waldmann MR (2006) Kausales Denken. In: Funke J (ed) Enzyklopädie der Psychologie ’Denken und Problemlösen’, no. 8 in C, Hogrefe, Göttingen, chap II, pp 87–166

    Google Scholar 

  • Halbmayer E , Salat J (2012) Qualitative Methoden der Kultur- und Sozialanthropologie. http://www.univie.ac.at/ksa/elearning/cp/qualitative/qualitative-5.html

  • Halford GS, Wilson WH, Phillips S (2010) Relational knowledge: the foundation of higher cognition. Trends Cogn Sci 14:497–505

    Article  Google Scholar 

  • Hebb DO (1949) The organization of behavior. Wiley, New York

    Google Scholar 

  • Hinterecker T, Knauff M, Johnson-Laird PN (2016) Modality, probability, and mental models. J Exp Psychol: Learn Mem Cogn 42(10):1606–1620

    Google Scholar 

  • Hölldobler S, Ramli CDPK (2009) Logic programs under three-valued Łukasiewicz semantics. In: Logic programming. Springer, Berlin, pp 464–478

    Google Scholar 

  • Hollnagel E, Woods DD (2005) Joint cognitive systems: foundations of cognitive systems engineering. CRC Press, Boca Raton

    Book  Google Scholar 

  • Johnson-Laird PN (2006) How we reason. Oxford University Press, New York

    Google Scholar 

  • Just MA, Carpenter PA, Varma S (1999) Computational modeling of high-level cognition and brain function. Hum Brain Mapp 8:128–136

    Article  Google Scholar 

  • Kahneman D (2011) Thinking, fast and slow. Macmillan, New York

    Google Scholar 

  • Kahneman D (2003) A perspective on judgement and choice. Am Psychol 58:697–720

    Article  Google Scholar 

  • Kaller CP, Unterrainer JM, Rahm B, Halsband U (2004) The impact of problem structure on planning: insights from the Tower of London task. Cogn Brain Res 20:462–72

    Google Scholar 

  • Khemlani S, Johnson-Laird PN (2009) Disjunctive illusory inferences and how to eliminate them. Mem Cogn 37:615–623

    Article  Google Scholar 

  • Khemlani S, Johnson-Laird PN (2012) Theories of the syllogism: a meta-analysis. Psychol Bull

    Google Scholar 

  • Khemlani S, Johnson-Laird PN (2013) The processes of inference. Argum Comput 4(1):4–20

    Article  Google Scholar 

  • Khemlani S, Johnson-Laird PN (2016) How people differ in syllogistic reasoning. In: Proceedings of the 36th annual conference of the cognitive science society. Cognitive Science Society, Austin, TX

    Google Scholar 

  • Klauer KC, Musch J, Naumer B (2000) On belief bias in syllogistic reasoning. Psychol Rev 107(4):852–884

    Article  Google Scholar 

  • Knauff M (2013) Space to reason: a spatial theory of human thought. MIT Press, Cambridge

    Book  Google Scholar 

  • Knauff M, Johnson-Laird PN (2002) Visual imagery can impede reasoning. Mem Cogn 30:363–71

    Article  Google Scholar 

  • Kotseruba I, Gonzalez OJA, Tsotsos JK (2016) A review of 40 years of cognitive architecture research: focus on perception, attention, learning and applications. arXiv:161008602

  • Kuhnmünch G, Ragni M (2014) Can formal non-monotonic systems properly describe human reasoning? In: Bello P, Guarini M, McShane M, Scassellati B (eds) Proceedings of the 36th annual conference of the cognitive science society, Austin, TX, pp 1222–1228

    Google Scholar 

  • Laird JE (2008) Extending the SOAR cognitive architecture. In: AGI, pp 224–235

    Google Scholar 

  • Laird JE (2012) The SOAR cognitive architecture. The MIT Press, Cambridge

    Google Scholar 

  • Legrenzi P, Girotto V, Johnson-Laird PN (1993) Focussing in reasoning and decision making. Cognition 49(1):37–66

    Article  Google Scholar 

  • lle Lépine R, Parrouillet P, Camos V, (2005) What makes working memory spans so predictive of high-level cognition? Psychon Bull Rev 12(1):165–170

    Google Scholar 

  • Lovett A, Tomai E, Forbus K, Usher J (2009) Solving geometric analogy problems through two-stage analogical mapping. Cogn Sci 33(7):1192–1231

    Article  Google Scholar 

  • Lovett A, Forbus K, Usher J (2010) A structure-mapping model of raven’s progressive matrices. In: Ohlsson S, Catrambone R (eds) Proceedings of the 32nd annual conference of the cognitive science society. Cognitive Science Society, pp 2761–2766

    Google Scholar 

  • Marr D (1982) Vision. A computational investigation into the human representation and processing of visual information. Freeman, San Francisco

    Google Scholar 

  • McClamrock R (1991) Marr’s three levels: a re-evaluation. Minds Mach 1(2):185–196

    Article  Google Scholar 

  • McClelland JL, Rogers TT (2003) The parallel distributed processing approach to semantic cognition. Nat Rev Neurosci 4(4):310

    Article  Google Scholar 

  • McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115–133

    Article  MathSciNet  MATH  Google Scholar 

  • Neal RM (2012) Bayesian learning for neural networks, vol 118. Springer, Berlin, Heidelberg

    Google Scholar 

  • Neves RDS, Bonnefon J, Raufaste E (2002) An empirical test of patterns for nonmonotonic inference. Ann Math Artif Intell 34(1–3):107–130

    Article  MathSciNet  MATH  Google Scholar 

  • Newell A (1979) Reasoning, problem solving and decision processes: the problem space as a fundamental category. Technical report, Computer science department CMU

    Google Scholar 

  • Newell A (1990) Unified theories of cognition. Harvard University Press, Cambridge

    Google Scholar 

  • Newell A (1994) Unified theories of cognition. The William James lectures. Harvard University Press, Cambridge

    Google Scholar 

  • Newell A, Simon HA (1972) Human problem solving. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Newell A, Simon HA (1976) Computer science as empirical enquiry: symbols and search. Commun ACM 19:113–126

    Article  Google Scholar 

  • Newstead SE (1995) Gricean implicatures and syllogistic reasoning. J Mem Lang 34:644–664

    Article  Google Scholar 

  • Oaksford M, Chater N (2001) The probabilistic approach to human reasoning. Trends Cogn Sci 5(8):349–357

    Article  Google Scholar 

  • Oaksford M, Chater N (2007) Bayesian rationality: the probabilistic approach to human reasoning. Oxford University Press, Oxford

    Book  Google Scholar 

  • Oberauer K (2006) Reasoning with conditionals: a test of formal models of four theories. Cogn Psychol 53:238–283

    Article  Google Scholar 

  • O’Reilly RC (2006) Biologically based computational models of high-level cognition. Science 314(5796):91–94

    Article  MathSciNet  MATH  Google Scholar 

  • Papadimitriou CM (1994) Computational complexity. Addison-Wesley, Reading

    Google Scholar 

  • Pearl J (2000) Causality: models, reasoning, and inference. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Pfeifer N, Kleiter GD (2005) Coherence and nonmonotonicity in human reasoning. Synthese 146:93–109

    Article  MathSciNet  MATH  Google Scholar 

  • Pothos EM, Busemeyer JR (2009) A quantum probability explanation for violations of ‘rational’ decision theory. Proc R Soc Lond B: Biol Sci

    Google Scholar 

  • Potts GR (1974) Storing and retrieving information about ordered relationships. J Exp Psychol 103(3):431

    Article  Google Scholar 

  • Ragni M (2008) Räumliche Repräsentation, Komplexität und Deduktion: Eine kognitive Komplexitätstheorie[Spatial representation, complexity and deduction: A cognitive theory of complexity]. Ph.D. thesis, Albert-Ludwigs-Universität Freiburg

    Google Scholar 

  • Ragni M, Knauff M (2013) A theory and a computational model of spatial reasoning with preferred mental models. Psychol Rev 120(3):561–588

    Article  Google Scholar 

  • Ragni M, Kola I, Johnson-Laird P (2018) On selecting evidence to test hypotheses: a theory of selection tasks. Psychol Bull 144(8):779–796

    Google Scholar 

  • Ragni M, Eichhorn C, Kern-Isberner G (2016) Simulating human inferences in the light of new information: a formal analysis. In: Kambhampati S (ed) Proceedings of the twenty-fifth international joint conference on artificial intelligence, IJCAI 2016, New York, NY, USA, 9–15 July 2016, IJCAI/AAAI Press, pp 2604–2610. http://www.ijcai.org/Proceedings/2016

  • Ragni M, Eichhorn C, Bock T, Kern-Isberner G, Tse APP (2017) Formal nonmonotonic theories and properties of human defeasible reasoning. Minds Mach 27(1):79–117

    Article  Google Scholar 

  • Raufaste E, Neves RDS, Mariné C (2003) Testing the descriptive validity of possibility theory in human judgments of uncertainty. Artif Intell 148(1–2):197–218

    Article  MATH  Google Scholar 

  • Raven JC (1962) Advanced progressive matrices, Set II. H. K. Lewis, London

    Google Scholar 

  • Raven J, Raven JC, Court JH (2000) Manual for ravens progressive matrices and vocabulary scales. Harcourt Assessment, San Antonio, TX

    Google Scholar 

  • Rips LJ (1994) The psychology of proof: deductive reasoning in human thinking. The MIT Press, Cambridge

    Book  MATH  Google Scholar 

  • Russell S, Norvig P (2003) Artificial intelligence: a modern approach, 2nd edn. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Schmid U, Ragni M, Gonzalez C, Funke J (2011) The challenge of complexity for cognitive systems. Cogn Syst Res 12(3–4):211–218

    Article  Google Scholar 

  • Searle JR (1980) Minds, brains, and programs. Behav Brain Sci 3(3):417–424

    Article  Google Scholar 

  • Searle JR (2004) Mind: a brief introduction. Oxford University Press, Oxford

    Google Scholar 

  • Shallice T (1988) From neuropsychology to mental structure. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Simon HA, Newell A (1962) Computer simulation of human thinking and problem solving, vol 27 [Society for Research in Child Development, Wiley], pp 137–150

    Google Scholar 

  • Simon HA, Wallach D (1999) Editorial: cognitive modeling in perspective. Kognitionswissenschaft 8:1–4

    Google Scholar 

  • Smolensky P (1988) On the proper treatment of connectionism. Behav Brain Sci 11:1–74

    Article  Google Scholar 

  • Stenning K, Lambalgen M (2008) Human reasoning and cognitive science. Bradford Books, MIT Press, Cambridge

    Book  Google Scholar 

  • Sternberg RJ (1980) Reasoning, problem solving, and intelligence. Technical report, DTIC Document

    Google Scholar 

  • Sternberg RJ (1999) The nature of cognition. A Bradford Book, MIT Press, Cambridge

    Google Scholar 

  • Stewart T, Choo FX, Eliasmith C (2012) Spaun: a perception-cognition-action model using spiking neurons. In: Proceedings of the cognitive science society, vol 34

    Google Scholar 

  • Steyvers M, Tenenbaum JB, Wagenmakers EJ, Blum B (2003) Inferring causal networks from observations and interventions. Cogn Sci 27(3):453–489. http://dblp.uni-trier.de/db/journals/cogsci/cogsci27.html#SteyversTWB03

  • Steyvers M, Griffiths TL, Dennis S (2006) Probabilistic inference in human semantic memory. Trends Cogn Sci 10:327–334

    Article  Google Scholar 

  • Strannegård C, Cirillo S, Ström V (2013) An anthropomorphic method for progressive matrix problems. Cogn Syst Res 22–23:35–46

    Article  Google Scholar 

  • Strube G (1992) The role of cognitive science in knowledge engineering. In: Contemporary knowledge engineering and cognition, pp 159–174

    Google Scholar 

  • Strube G, Ferstl E, Konieczny L, Ragni M (2013) Kognition. In: Görz G, Schneeberger J, Schmid U (eds) Handbuch der Künstlichen Intelligenz. Oldenbourg, München

    Google Scholar 

  • Sun R (2001) Duality of the mind - a bottom-up approach toward cognition. Lawrence Erlbaum

    Google Scholar 

  • Szymanik J (2016) Quantifiers and cognition: logical and computational perspectives. Springer, Berlin

    Book  MATH  Google Scholar 

  • Tambe M, Johnson WL, Jones RM, Koss FV, Laird JE, Rosenbloom PS, Schwamb K (1995) Intelligent agents for interactive simulation environments. AI Mag 16(1):15–39

    Google Scholar 

  • Tenenbaum JB, Griffiths TL, Kemp C (2006) Theory-based Bayesian models of inductive learning and reasoning. Trends Cogn Sci 10:309–318

    Article  Google Scholar 

  • Tenenbaum JB, Kemp C, Griffiths TL, Goodman ND (2011) How to grow a mind: statistics, structure, and abstraction. Science 331(6022):1279–1285

    Article  MathSciNet  MATH  Google Scholar 

  • Tversky A, Kahneman D (1973) Availability: a heuristic for judging frequency and probability. Cogn Psychol 5(2):207–232

    Article  Google Scholar 

  • Tversky A, Kahneman D (1983) Extensional versus intuitive reasoning: the conjunction fallacy in probability judgment. Psychol Rev 90(4):293

    Article  Google Scholar 

  • Van der Henst JB (2002) Mental model theory versus the inference rule approach in relational reasoning. Think Reason 8(3):193–203

    Article  Google Scholar 

  • Verschueren N, Schaeken W, De Neys W, d’Ydewalle G (2004) The difference between generating counterexamples and using them during reasoning. Q J Exp Psychol Sect A 57(7):1285–1308

    Article  Google Scholar 

  • Wason PC (1971) Problem solving and reasoning. Br Med Bull 27(3):206–210

    Article  Google Scholar 

  • Wertheimer M (1923) A brief introduction to Gestalt, identifying key theories and principles. Psychol Forsch 4:301–350

    Google Scholar 

  • Xu F, Tenenbaum JB (2007) Word learning as bayesian inference. Psychol Rev 114(2):245–72

    Article  Google Scholar 

  • Zhai F (2015) Toward probabilistic natural logic for syllogistic reasoning. Ph.D. thesis, Universiteit van Amsterdam

    Google Scholar 

Download references

Acknowledgements

The author is grateful to Bernhard Nebel (University of Freiburg), Emmanuelle-Anna Dietz Saldanha (TU Dresden), and Nicolas Riesterer (University of Freiburg) for their substantial feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Ragni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ragni, M. (2020). Artificial Intelligence and High-Level Cognition. In: Marquis, P., Papini, O., Prade, H. (eds) A Guided Tour of Artificial Intelligence Research. Springer, Cham. https://doi.org/10.1007/978-3-030-06170-8_14

Download citation

Publish with us

Policies and ethics