Skip to main content

Artificial Intelligence and Pattern Recognition, Vision, Learning

  • Chapter
  • First Online:
A Guided Tour of Artificial Intelligence Research

Abstract

This chapter describes a few problems and methods combining artificial intelligence, pattern recognition, computer vision and learning. The intersection between these domains is growing and gaining importance, as illustrated in this chapter with a few examples. The first one deals with knowledge guided image understanding and structural recognition of shapes and objects in images. The second example deals with code supervision, which allows designing specific applications by exploiting existing algorithms in image processing, focusing on the formulation of processing objectives. Finally, the third example shows how different theoretical frameworks and methods for learning can be associated with the constraints inherent to the domain of robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This section is to a large part adapted from Nempont et al. (2013).

References

  • Abbeel P (2008) Apprenticeship learning and reinforcement learning with application to robotic control. PhD thesis, Stanford University, Computer Science

    Google Scholar 

  • Agarwal S, Awan A, Roth D (2004) Learning to detect objects in images via a sparse, part-based representation. IEEE Trans Pattern Anal Mach Intell 26(11):1475–1490

    Article  Google Scholar 

  • Anouncia SM, Saravanan R (2007) Ontology-based process plan generation for image processing. Int J Metadata Semant Ontol 2(3):211–222

    Article  Google Scholar 

  • Atif J, Hudelot C, Bloch I (2013) Explanatory reasoning for image understanding using formal concept analysis and description logics. IEEE Trans Syst Man Cybern 44:552–570

    Article  Google Scholar 

  • Atkeson CG, Moore AW, Schaal S (1997) Locally weighted learning. Artif Intell Rev 11(1):11–73

    Article  Google Scholar 

  • Bengoetxea E, Larranaga P, Bloch I, Perchant A, Boeres C (2002) Inexact graph matching by means of estimation of distribution algorithms. Pattern Recognit 35(12):2867–2880

    Article  MATH  Google Scholar 

  • Benz U, Hofmann P, Willhauck G, Lingenfelder I, Heynen M (2004) Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J Photogramm Remote Sens 58(3–4):239–258

    Article  Google Scholar 

  • Berk T, Brownston L, Kaufman A (1982) A new color-naming system for graphics languages. IEEE Comput Graph Appl 2(3):37–44

    Article  Google Scholar 

  • Bloch I (2003) Traitement d’images. In: Bouchon-Meunier B, Marsala C (eds) Traitement de données complexes et commande en logique floue (Chap. 3). Hermes, Paris, pp 95–152

    Google Scholar 

  • Bloch I (2005) Fuzzy spatial relationships for image processing and interpretation: a review. Image Vis Comput 23(2):89–110

    Article  Google Scholar 

  • Bloch I (2006) Spatial reasoning under imprecision using fuzzy set theory, formal logics and mathematical morphology. Int J Approx Reason 41:77–95

    Article  MathSciNet  MATH  Google Scholar 

  • Bloch I (2008) Information fusion in signal and image processing. ISTE-Wiley, London

    Book  Google Scholar 

  • Bloch I, Géraud T, Maître H (2003) Representation and fusion of heterogeneous fuzzy information in the 3D space for model-based structural recognition - application to 3D brain imaging. Artif Intell 148(1–2):141–175

    Article  MathSciNet  MATH  Google Scholar 

  • Bloehdorn S, Petridis K, Saathoff C, Simou N, Tzouvaras V, Avrithis Y, Handschuh S, Kompatsiaris Y, Staab S, Strintzis M (2005) Semantic annotation of images and videos for multimedia analysis. Second European Semantic Web Conference (ESWC). Crete, Greece, pp 592–607

    Google Scholar 

  • Bodington R (1995) A software environment for the automatic configuration of inspection systems. International Workshop on Knowledge Based Systems for the reUse of Program Libraries (KBUP). Sophia Antipolis, France, pp 100–108

    Google Scholar 

  • Boucher A, Doisy A, Ronot X, Garbay C (1998) A society of goal-oriented agents for the analysis of living cells. Artif Intell Med 14(1–2):183–199

    Article  Google Scholar 

  • Bovemkamp E, Dijkstra J, Bosch J, Reiber J (2004) Multi-agent segmentation of IVUS images. Pattern Recognit 37:647–63

    Article  Google Scholar 

  • Calinon S (2009) Robot programming by demonstration: a probabilistic approach. EPFL/CRC Press, Lausanne

    Google Scholar 

  • Cãmara G, Engenhofer M, Fonseca F, Monteiro A (2001) What’s in an image? International Conference on Spatial Information Theory: Foundations of Geographic Information Science, Morro Bay, CA 2205:474–488

    Article  MATH  Google Scholar 

  • Cesar R, Bengoetxea E, Bloch I, Larranaga P (2005) Inexact graph matching for model-based recognition: evaluation and comparison of optimization algorithms. Pattern Recognit 38(11):2099–2113

    Article  Google Scholar 

  • Charlebois D (1997) A planning system based on plan re-use and its application to geographical information systems and remote sensing. PhD thesis, University of Ottawa, Canada

    Google Scholar 

  • Charroux B, Philipp S (1995) Interpretation of aerial images based on potential functions. 9th Scandinavian Conference on Image Analysis. Uppsala, Sweden, pp 671–678

    Google Scholar 

  • Chien S, Mortensen H (1996) Automating image processing for scientific data analysis of a large image database. IEEE Trans Pattern Anal Mach Intell 18(8):854–859

    Article  Google Scholar 

  • Chein M, Mugnier M (2008) Graph-based knowledge representation: computational foundations of conceptual graphs. Springer, New York

    MATH  Google Scholar 

  • Clément V, Thonnat M (1993) A knowledge-based approach to integration of image procedures processing. CVGIP Image Underst 57(2):166–184

    Article  Google Scholar 

  • Clouard R, Porquet C, Elmoataz A, Revenu M (1999) Borg: a knowledge-based system for automatic generation of image processing programs. IEEE Trans Pattern Anal Mach Intell 21(2):128–144

    Article  Google Scholar 

  • Clouard R, Renouf A, Revenu M (2010) An ontology-based model for representing image processing objectives. Int J Pattern Recognit Artif Intell 24(8):1181–1208

    Article  Google Scholar 

  • Coates A, Abbeel P, Ng AY (2008) Learning for control from multiple demonstrations. In: 25th International Conference on Machine Learning, pp 144–151

    Google Scholar 

  • Colliot O, Camara O, Bloch I (2006) Integration of fuzzy spatial relations in deformable models - application to brain MRI segmentation. Pattern Recognit 39:1401–1414

    Article  Google Scholar 

  • Conte D, Foggia P, Sansone C, Vento M (2004) Thirty years of graph matching in pattern recognition. Int J Pattern Recognit Artif Intell 18(3):265–298

    Article  Google Scholar 

  • Coradeschi S, Saffiotti A (1999) Anchoring symbols to vision data by fuzzy logic. In: Hunter A, Parsons S (eds) ECSQARU’99. LNCS, vol 1638. Springer, London, pp 104–115

    Google Scholar 

  • Crevier D, Lepage R (1997) Knowledge-based image understanding systems: a survey. Comput Vis Image Underst 67(2):161–185

    Article  Google Scholar 

  • Dejean P, Dalle P (1996) Image analysis operators as concept constructors. IEEE Southwest Symposium on Image Analysis and Interpretation. San Antonio, USA, pp 66–70

    Google Scholar 

  • Denœux T (2008) Conjunctive and disjunctive combination of belief functions induced by nondistinct bodies of evidence. Artif Intell 172(2–3):234–264

    Article  MathSciNet  MATH  Google Scholar 

  • Deruyver A, Hodé Y (1997) Constraint satisfaction problem with bilevel constraint: application to interpretation of over-segmented images. Artif Intell 93(1–2):321–335

    Article  MathSciNet  MATH  Google Scholar 

  • Deruyver A, Hodé Y (2009) Qualitative spatial relationships for image interpretation by using a conceptual graph. Image Vis Comput 27(7):876–886

    Article  MATH  Google Scholar 

  • Desachy J (1990) ICARE: an expert system for automatic mapping from satellite imagery. In: Pau LF (ed) Mapping and spatial modelling for navigation, vol F65. NATO-ASI. Springer, Berlin

    Google Scholar 

  • Dominey PF (2007) Sharing intentional plans for imitation and cooperation: integrating clues from child developments and neurophysiology into robotics. In: Proceedings of the AISB 2007 Workshop on Imitation

    Google Scholar 

  • Dominey PF, Warneken F (2009) The basis of shared intentions in human and robot cognition. New Ideas Psychol

    Google Scholar 

  • Doya K (2000) Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr Opin Neurobiol 10:732–739

    Article  Google Scholar 

  • Draper B, Bins J, Baek K (1999) ADORE: adaptive object recognition. International Conference on Vision Systems (ICVS). Las Palmas de Gran Canaria, Spain, pp 522–537

    Google Scholar 

  • D’Souza A, Vijayakumar S, Schaal S (2001) Learning inverse kinematics. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 1:298–303. https://doi.org/10.1109/IROS.2001.973374

    Article  Google Scholar 

  • Dubois D, Prade H (1980) Fuzzy sets and systems: theory and applications. Academic, New-York

    MATH  Google Scholar 

  • Dubois D, Prade H (1988) Possibility theory. Plenum, New-York

    Book  MATH  Google Scholar 

  • Dubois D, Prade H (2001) La problématique scientifique du traitement de l’information. Inf-Interact-Intell 1(2):79–98

    Google Scholar 

  • Ficet-Cauchard V, Porquet C, Revenu M (1999) CBR for the management and reuse of image-processing expertise: a conversational system. Eng Appl Artif Intell 12(6):733–747

    Article  Google Scholar 

  • Fouquier G, Atif J, Bloch I (2008) Sequential spatial reasoning in images based on pre-attention mechanisms and fuzzy attribute graphs. European Conference on Artificial Intelligence, ECAI, Patras, Greece 178:611–615

    Google Scholar 

  • Fouquier G, Atif J, Bloch I (2012) Sequential model-based segmentation and recognition of image structures driven by visual features and spatial relations. Comput Vis Image Underst 116(1):146–165

    Article  Google Scholar 

  • Frucci M, Perner P, Sanniti di Baja G (2008) Case-based-reasoning for image segmentation. Int J Pattern Recognit Artif Intell 22(5):829–842

    Article  Google Scholar 

  • Garbay C (2001) Architectures logicielles et contrôle dans les systèmes de vision. In: Jolion JM (ed) Les systèmes de Vision (Chap. 7). Hermès, Paris, pp 197–252

    Google Scholar 

  • Gruber TR (1993) Towards principles for the design of ontologies used for knowledge sharing. In: Guarino N, Poli R (eds) Formal ontology in conceptual analysis and knowledge representation. Kluwer Academic Publishers, Deventer. http://citeseer.ist.psu.edu/gruber93toward.html

  • Guillot A, Meyer JA (2008) La Bionique: quand la science s’inspire de la nature. Dunod, collection UniverSciences

    Google Scholar 

  • Gurevich IB, Salvetti O, Trusova YO (2009) Fundamental concepts and elements of image analysis ontology. Pattern Recognit Image Anal 19(4):603–611

    Article  Google Scholar 

  • Hanson AR, Rieseman EM (1978) Visions: a computer system for interpreting scenes. Academic, New York, pp 303–333

    Google Scholar 

  • Harnad S (1990) The symbol grounding problem. Physica 42:335–346

    Google Scholar 

  • Hasboun D (2005) Neuranat. http://www.chups.jussieu.fr/ext/neuranat/index.html

  • Hudelot C (2005) Towards a cognitive vision platform for semantic image interpretation; application to the recognition of biological organisms. PhD in computer science, Université de Nice Sophia Antipolis

    Google Scholar 

  • Hudelot C, Atif J, Bloch I (2008) Fuzzy spatial relation ontology for image interpretation. Fuzzy Sets Syst 159(15):1929–1951

    Article  MathSciNet  Google Scholar 

  • Hudelot C, Atif J, Bloch I (2010) Integrating bipolar fuzzy mathematical morphology in description logics for spatial reasoning. In: ECAI 2010, Lisbon, Portugal, pp 497–502

    Google Scholar 

  • Hunter J (2001) Adding multimedia to the semantic web - building an MPEG-7 ontology. International Semantic Web Working Symposium (SWWS), Stanford, CA, pp 261–281

    Google Scholar 

  • Ijspeert JA, Nakanishi J, Schaal S (2002) Movement imitation with nonlinear dynamical systems in humanoid robots. In: International Conference on Robotics and Automation (ICRA)

    Google Scholar 

  • Kruse T, Kirsch A, Sisbot EA, Alami R (2010) Exploiting human cooperation in human-centered robot navigation. In: International Symposium in Robot and Human Interactive Communication (IEEE ROMAN), pp 212–217

    Google Scholar 

  • Kuipers BJ, Levitt TS (1988) Navigation and mapping in large-scale space. AI Mag 9(2):25–43

    Google Scholar 

  • Lansky A, Friedman M, Getoor L, Schmidler S, Short N Jr (1995) The collage/khoros links: planning for image processing tasks. AAAI Spring Symposium: Integrated Planning Applications. Menlo Park, CA, pp 67–76

    Google Scholar 

  • Le Ber F, Napoli A (2002) The design of an object-based system for representing and classifying spatial structures and relations. J Univers Comput Sci 8(8):751–773

    Google Scholar 

  • LeCun Y, Bengio J, Hinton GE (2015) Deep learning. Nature 521(7553):436–444

    Article  Google Scholar 

  • Leibe B, Ettlin A, Schiele B (2008) Learning semantic object parts for object categorization. Image Vis Comput 26(1):15–26

    Article  Google Scholar 

  • Lesaint F, Sigaud O, Flagel SB, Robinson TE, Khamassi M (2014) Modelling individual differences in the form of pavlovian conditioned approach responses: a dual learning systems approach with factored representations. PLoS Comput Biol 10(2):e1003466

    Article  Google Scholar 

  • Liedtke C, Blömer A (1992) Architecture of the knowledge based configuration system for image analysis “Conny”. In: IEEE International Conference on Pattern Recognition (ICPR), The Hague, Netherlands, pp 375–378

    Google Scholar 

  • Ligozat G (1998) Reasoning about cardinal directions. J Vis Lang Comput 9:23–44

    Article  Google Scholar 

  • Lungarella M, Metta G, Pfeifer R, Sandini G (2003) Developmental robotics: a survey. Connect Sci 15:151–190

    Google Scholar 

  • Maillot N, Thonnat M (2008) Ontology-based complex object recognition. Image Vis Comput 26(1):102–113

    Article  Google Scholar 

  • Martin V, Maillot N, Thonnat M (2006) A Learning approach for adaptive image segmentation. In: 4th IEEE International Conference on Computer Vision Systems (ICVS), New York, pp 40–47

    Google Scholar 

  • Matsuyama T (1986) Knowledge-based aerial image understanding systems and expert systems for image processing. In: International Geoscience and Remote Sensing Symposium (Zurich), pp 1026–1038

    Google Scholar 

  • Matsuyama T (1989) Expert systems for image processing: knowledge-based composition of image analysis processes. Comput Vis Graph Image Process 48(1):22–49

    Article  Google Scholar 

  • Matsuyama T, Hwang VSS (1990) SIGMA: a knowledge-based aerial image understanding system. Plenum, New York

    Book  Google Scholar 

  • McKeown DM, Harvey WA, McDermott J (1985) Rule-based interpretation of aerial imagery. IEEE Trans Pattern Anal Mach Intell PAMI 7(5):570–585

    Article  Google Scholar 

  • Mezaris V, Kompatsiaris I (2004) Strintzis MG (2004) Region-based image retrieval using an object ontology and relevance feedback. Eurasip J Appl Signal Process 6:886–901

    Google Scholar 

  • Minsky M (1974) A framework for representing knowledge. In: Winston P (ed) The psychology of computer vision. McGraw Hill, New York

    Google Scholar 

  • Najar A, Sigaud O, Chetouani M (2015) Social-task learning for HRI. Social robotics. Springer, Cham, pp 472–481

    Chapter  Google Scholar 

  • Nazif A, Levine M (1984) Low level image segmentation: an expert system. IEEE Trans Pattern Anal Mach Intell 6(5):555–577

    Article  Google Scholar 

  • Nempont O, Atif J, Bloch I (2013) A constraint propagation approach to structural model based image segmentation and recognition. Inf Sci 246:1–27

    Article  MathSciNet  MATH  Google Scholar 

  • Neumann B, Möller R (2008) On scene interpretation with description logics. Image Vis Comput 26(1):82–110

    Article  Google Scholar 

  • Oudeyer PY, Kaplan F, Hafner V (2007) Intrinsic motivation systems for autonomous mental development. IEEE Trans Evol Comput 11(2):265–286

    Article  Google Scholar 

  • Pasqui V, Saint-Bauzel L, Sigaud O (2010) Characterization of a least effort user-centered trajectory for sit-to-stand assistance user-centered trajectory for sit-to-stand assistance. In: IUTAM Symposium on Dynamics Modeling and Interaction Control in Virtual and Real Environments

    Google Scholar 

  • Perchant A, Bloch I (2002) Fuzzy morphisms between graphs. Fuzzy Sets Syst 128(2):149–168

    Article  MathSciNet  MATH  Google Scholar 

  • Perner P, Holt A, Richter M (2005) Image processing in case-based reasoning. Knowl Eng Rev 20(3):311–314

    Article  Google Scholar 

  • Protire A, Sapiro G (2007) Interactive image segmentation via adaptive weighted distances. IEEE Trans Image Process 16(4):1046–1057

    Article  MathSciNet  Google Scholar 

  • Quillian M (1967) Word concepts: a theory and simulation of some basic semantic capabilities. Behav Sci 12(5):410–430

    Article  Google Scholar 

  • Quinton JC, Buisson JC, Perotto F (2008) Anticipative coordinated cognitive processes for interactivist and Piagetian theories. In: Wang P, Goertzel B, Franklin S (eds) 1st Conference on Artificial General Intelligence. Frontiers in Artificial Intelligence and Applications vol 171. IOS Press, Memphis, pp 287–298

    Google Scholar 

  • Rao A, Lohse G (1993) Towards a texture naming system: identifying relevant dimensions of texture. 4th IEEE Conference of Visualization, San Jose, CA, pp 220–227

    Google Scholar 

  • Ratliff N, Silver D, Bagnell J (2009) Learning to search: functional gradient techniques for imitation learning. Auton Robot 27(1):25–53

    Article  Google Scholar 

  • Renouf A, Clouard R, Revenu M (2007) How to formulate image processing applications? International Conference on Computer Vision Systems (ICVS). Bielefeld, Germany, pp 1–10

    Google Scholar 

  • Rosse C, Mejino J (2003) A reference ontology for bioinformatics: the foundational model of anatomy. J Biomed Inform 36(6):478–500

    Article  Google Scholar 

  • Rost U, Mnkel H (1998) Knowledge-based configuration of image processing algorithms. International Conference on Computational Intelligence and Multimedia Applications (ICCIMA). Monash, Australia, pp 9–11

    Google Scholar 

  • Saathoff C, Staab S (2008) Exploiting spatial context in image region labelling using fuzzy constraint reasoning. In: Ninth International Workshop on Image Analysis for Multimedia Interactive Services WIAMIS’08, pp 16–19

    Google Scholar 

  • Saint-Bauzel L, Pasqui V, Monteil I (2009) A reactive robotized interface for lower limb rehabilitation: clinical results. IEEE Trans Robot Spec Issue Rehabil Robot 25:583–592

    Article  Google Scholar 

  • Salaun C, Padois V, Sigaud O (2010) Learning forward models for the operational space control of redundant robots. In: Peters J, Sigaud O (eds) From Motor Learning to Interaction Learning in Robots, vol 264. Springer, Berlin, pp 169–192. https://doi.org/10.1007/978-3-642-05181-4_8

  • Schaal S (1999) Is imitation learning the route to humanoid robots? Trends Cogn Sci 6:233–242

    Article  Google Scholar 

  • Shafer G (1976) A mathematical theory of evidence. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Sigaud O, Droniou A (2016) Towards deep developmental learning. IEEE Trans Cogn Dev Syst 8(2):99–114. https://doi.org/10.1109/TAMD.2015.2496248

    Article  Google Scholar 

  • Smeulders A, Worring M, Santini S, Gupta A, Jain R (2000) Content-based image retrieval at the end of the early years. IEEE Trans Pattern Anal Mach Intell 22(12):1349–1380

    Article  Google Scholar 

  • Sowa J (1984) Conceptual graphs: information processing in mind and machine. Addison Wesley, Reading, p 234

    MATH  Google Scholar 

  • Stulp F, Sigaud O (2012) Path integral policy improvement with covariance matrix adaptation. 29th International Conference on Machine Learning (ICML). Edinburgh, Scotland, pp 1–8

    Google Scholar 

  • Stulp F, Sigaud O (2015) Many regression algorithms, one unified model: a review. Neural Netw 69:60–79

    Article  MATH  Google Scholar 

  • Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. MIT Press, Cambridge

    MATH  Google Scholar 

  • Thonnat M, Moisan S (2000) What can program supervision do for program reuse? IEEE Proc Softw 147(5):179–185

    Article  Google Scholar 

  • Town C (2006) Ontological inference for image and video analysis. Mach Vis Appl 17(2):94–115, www.cl.cam.ac.uk/~cpt23/papers/TownMVA2006.pdf

  • Vanegas MC, Bloch I, Inglada J (2016) Fuzzy constraint satisfaction problem for model-based image interpretation. Fuzzy Sets Syst 286:1–29

    Article  MathSciNet  MATH  Google Scholar 

  • Vieu L (1997) Spatial representation and reasoning in artificial intelligence. In: Stock O (ed) Spatial and temporal reasoning. Kluwer, Dordrecht, pp 5–41

    Chapter  Google Scholar 

  • Vijayakumar S, D’Souza A, Schaal S (2005) Incremental online learning in high dimensions. Neural Comput 12:2602–2634

    Article  MathSciNet  Google Scholar 

  • Vinyals O, Toshev A, Bengio S, Erhan D (2015) Show and tell: a neural image caption generator. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 3156–3164

    Google Scholar 

  • Waxman S (2000) Correlative neuroanatomy, 24th edn. McGraw-Hill, New York

    Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Bloch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bloch, I., Clouard, R., Revenu, M., Sigaud, O. (2020). Artificial Intelligence and Pattern Recognition, Vision, Learning. In: Marquis, P., Papini, O., Prade, H. (eds) A Guided Tour of Artificial Intelligence Research. Springer, Cham. https://doi.org/10.1007/978-3-030-06170-8_10

Download citation

Publish with us

Policies and ethics