Skip to main content

A Glance at Causality Theories for Artificial Intelligence

  • Chapter
  • First Online:
A Guided Tour of Artificial Intelligence Research

Abstract

Causality plays a key role in the understanding of the world by humans. As such, it has been considered by artificial intelligence researchers from different perspectives ranging from the use of causal links in diagnosis or in reasoning about action to the ascription of causality relations and the assessment of responsibility. In the last two decades, some formal models of causality, such as those proposed by Pearl and Halpern, have been much influential beyond the field of artificial intelligence because they account for the distinction between actual causality and spurious correlations. Yet other aspects of causality modeling are worth of interest, such as the role played by the notion of abnormality, since what we need to explain are often deviations from the normal course of things. The chapter provides a brief but extensive overview of the artificial intelligence literature dealing with causality, albeit without the ambition of giving a complete account of works by philosophers and psychologists that have influenced it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In French, “le jambon fait boire; le boire désaltère: par quoi le jambon désaltère”, Michel de Montaigne, Les Essais, Chap. 15, 1580.

  2. 2.

    This work has its roots in works on causal ordering, emphasizing the directed nature of causation, in econometrics, with the pioneering works of Wright (1921), Haavelmo (1943) (see Pearl 2015), continued in early works by Simon (1952, 1953, 1954), Simon and Rescher (1966). Later on, a debate took place about causal ordering and its use for qualitative reasoning in diagnosis (Iwasaki and Simon 1986a, b; de Kleer and Brown 1986).

  3. 3.

    The interest of linear structural equation models for analyzing non-trivial causal phenomena has been emphasized in the recent years by Pearl and his co-authors, see, e.g., Pearl (2013), Chen et al. (2014).

  4. 4.

    This proposal is based on the idea that counterfactuality involves the computation of two kinds of evolutions of the world, namely extrapolation and update. If we want to know whether an action is a counterfactual cause of an event, given a reported sequence of events, we need to (i) compute the most normal evolutions of the world (called trajectories) that correspond to the sequence. This computation is called extrapolation, it is a process of completing initial beliefs sets stemming from observations by assuming minimal abnormalities in the evolution of the world with respect to generic knowledge; (ii) compute what would have happened if some event had not been true. This is done by updating using a distance between trajectories that takes into account the date of the change, and normality.

References

  • Alechina N, Halpern JY, Logan B (2017) Causality, responsibility and blame in team plans. In: Larson K, Winikoff M, Das S, Durfee EH (eds) Proceedings of 16th conference on autonomous agents and multiagent systems (AAMAS’17), São Paulo, ACM, pp. 1091–1099

    Google Scholar 

  • Aleksandrowicz G, Chockler H, Halpern JY, Ivrii A (2017) The computational complexity of structure-based causality. J Artif Intell Res 58:431–451

    Article  MathSciNet  MATH  Google Scholar 

  • Ayachi R, Ben Amor N, Benferhat S (2014) Inference using compiled min-based possibilistic causal networks in the presence of interventions. Fuzzy Sets Syst 239:104–136

    Article  MathSciNet  MATH  Google Scholar 

  • Batusov V, Soutchanski M (2018) Situation calculus semantics for actual causality. In: Proceedings of 32nd AAAI Conference on Artificial Intelligence, AAAI Press, New Orleans

    Google Scholar 

  • Benferhat S (2010) Interventions and belief change in possibilistic graphical models. Artif Intell 174(2):177–189

    Article  MathSciNet  Google Scholar 

  • Benferhat S, Bonnefon J, Chassy P, Da Silva Neves R, Dubois D, Dupin de Saint-Cyr F, Kayser D, Nouioua F, Nouioua-Boutouhami S, Prade H, Smaoui S (2008) A comparative study of six formal models of causal ascription. In: Greco S, Lukasiewicz T (eds) Scalable uncertainty management, (Proceedings SUM’08). LNCS, vol 5291. Springer, Berllin, pp 47–62

    Google Scholar 

  • Benferhat S, Dubois D, Prade H (2009) Interventions in possibilistic logic. In: Godo L, Pugliese A (eds) Scalable Uncertainty Management (Proc. SUM’09), LNCS, vol 5785. Springer, Berlin, pp 40–54

    Google Scholar 

  • Benferhat S, Smaoui S (2011) Inferring interventions in product-based possibilistic causal networks. Fuzzy Sets Syst 169(1):26–50

    Article  MathSciNet  MATH  Google Scholar 

  • Bertossi LE (2018) Causality in databases: answer-set programs and integrity constraints. In: Olteanu D, Poblete B (eds) Proc. 12th Alberto Mendelzon Int. Workshop on foundations of data management, Cali, Colombia, CEUR workshop proceedings, vol 2100, CEUR-WS.org

    Google Scholar 

  • Besnard P, Cordier M-O, Moinard Y (2008a) Deriving explanations from causal information. In: Ghallab M, Spyropoulos CD, Fakotakis N, Avouris NM (eds) Proceedings of 18th European conference on artificial intelligence (ECAI’08), IOS Press, Patras, pp 723–724

    Google Scholar 

  • Besnard P, Cordier M-O, Moinard Y (2008b) Ontology-based inference for causal explanation. Integr Comput-Aided Eng 15(4):351–367

    Google Scholar 

  • Björnsson G (2007) How effects depend on their causes, why causal transitivity fails, and why we care about causation. Philos Stud 133(3):349–390

    Article  MathSciNet  Google Scholar 

  • Bochman A (2003) A logic for causal reasoning. In: Gottlob G, Walsh T (eds) Proceedings of 18th international joint conference on artificial intelligence (IJCAI’03), Morgan Kaufmann, Acapulco, pp 141–146

    Google Scholar 

  • Bonnefon J, Da Silva Neves R, Dubois D, Prade H (2008) Predicting causality ascriptions from background knowledge: model and experimental validation. Int J Approx Reason 48(3):752–765

    Article  MathSciNet  MATH  Google Scholar 

  • Bonnefon J, Da Silva Neves R, Dubois D, Prade H (2012) Qualitative and quantitative conditions for the transitivity of perceived causation - Theoretical and experimental results. Ann Math Artif Intell 64(2–3):311–333

    Article  MathSciNet  MATH  Google Scholar 

  • Boukhris I, Benferhat S, Elouedi Z (2014) Ascribing causality from observational and interventional belief function knowledge modeling. Mult-Valued Log Soft Comput 22(4–6):459–480

    MATH  Google Scholar 

  • Cartwright N (2007) Hunting causes and using them: approaches in philosophy and economics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Chambaz A, Drouet I, Thalabard J-C (2014) Causality, a trialogue. J Causal Inference 2(2):201–241

    Article  Google Scholar 

  • Chassy P, de Calmès M, Prade H (2012) Making sense as a process emerging from perception-memory interaction: a model. Int J Intell Syst 27(8):757–775

    Article  Google Scholar 

  • Chen B, Tian J, Pearl J (2014) Testable implications of linear structural equation models. In: Brodley CE, Stone P (eds) Proceedings of 28th AAAI Conference on Artificial Intelligence Québec City, July 27–31. AAAI Press, pp. 2424–2430

    Google Scholar 

  • Chockler H, Halpern JY (2004) Responsibility and blame: a structural-model approach. J Artif Intell Res 22:93–115

    Article  MathSciNet  MATH  Google Scholar 

  • De Finetti B (1936) La logique de la probabilité. Actes du Congrès international de philosophie scientifique. Hermann et Cie, Paris, pp 1–9

    Google Scholar 

  • de Kleer J, Brown JS (1986) Theories of causal ordering. Artif Intell 29(1):33–61

    Article  Google Scholar 

  • Demolombe R (2000) Action et causalité : Essais de formalisation en logique. In: Prade H, Jeansoulin R, Garbay C (eds) Le Temps, l’Espace et l’Evolutif en Sciences du Traitement de l’Information, Cépaduès, Toulouse, pp 209–223

    Google Scholar 

  • Demolombe R (2012) Causality in the context of multiple agents. In: Ågotnes T, Broersen JM, Elgesem D (eds) Proceedings of 11th international conference on deontic logic in computer science ( DEON’12), Bergen, LNCS, vol 7393. Springer, Berlin, pp 1–15

    Google Scholar 

  • Druzdzel MJ, Simon HA (1993) Causality in Bayesian belief networks. In: Heckerman D, Mamdani EH (eds) Proceedings of 9th conference on uncertainty in artificial intelligence (UAI’93), Providence, July 9–11, Morgan Kaufmann, pp 3–11

    Google Scholar 

  • Dubois D, Prade H (1995) Fuzzy relation equations and causal reasoning. Fuzzy Sets Syst 75(2):119–134

    Article  MathSciNet  MATH  Google Scholar 

  • Dubois D, Prade H (2000) An overview of ordinal and numerical approaches to causal diagnostic problem solving. In: Gabbay DM, Kruse R (eds) Abductive reasoning and learning, Kluwer Academic Publication, pp 231–280

    Google Scholar 

  • Dubois D, Prade H (2005) Modeling the role of (ab)normality in the ascription of causality judgements by agents. In: Morgenstern L, Pagnucco M (eds) Working notes of IJCAI-05 workshop on nonmonotonic reasonning, action and change (NTAC’05), Edinburgh, pp 22–27

    Google Scholar 

  • Dupin de Saint-Cyr F (2008) Scenario update applied to causal reasoning. In: Brewka G, Lang J (eds) Proceedings of 11th international conference on principles of knowledge representation and reasoning (KR’08), AAAI Press, Sydney, pp 188–197

    Google Scholar 

  • Eells E (1991) Probabilistic causality. Cambridge University Press, Cambridge

    Google Scholar 

  • Eells E, Sober E (1983) Probabilistic causality and the question of transitivity. Philos Sci 50:35–57

    Article  MathSciNet  Google Scholar 

  • Galles D, Pearl J (1997) Axioms of causal relevance. Artif Intell 97(1–2):9–43

    Article  MathSciNet  MATH  Google Scholar 

  • Galles D, Pearl J (1998) An axiomatic characterization of causal counterfactuals. Found Sci 3(1):151–182

    Article  MathSciNet  Google Scholar 

  • Gammerman A (ed) (1999) Causal models and intelligent data management. Springer, Berlin

    MATH  Google Scholar 

  • Gavanski I, Wells GL (1989) Counterfactual processing of normal and exceptional events. J Exp Soc Psychol 25:314–325

    Article  Google Scholar 

  • Geffner H (1990) Causal theories for nonmonotonic reasoning. In: Shrobe HE, Dietterich TG, Swartout WR (eds) Proceedings of 8th national conference on artificial intelligence, AAAI/MIT Press, pp 524–530

    Google Scholar 

  • Giordano L, Martelli A, Schwind C (1998) Dealing with concurrent actions in modal action logics. In: Prade H (ed) Proceedings of 13th European conference on artificial intelligence (ECAI’98), Brighton, Wiley, New York, pp 537–541

    Google Scholar 

  • Giordano L, Martelli A, Schwind C (2000) Ramification and causality in a modal action logic. J Log Comput 10(5):625–662

    Article  MathSciNet  MATH  Google Scholar 

  • Giunchiglia E, Lee J, Lifschitz V, McCain N, Turner H (2004) Nonmonotonic causal theories. Artif Intell 153(1–2):49–104

    Article  MathSciNet  MATH  Google Scholar 

  • Glymour C, Scheines R, Spirtes P, Kelly K (1987) Discovering causal structure. Academic, New York

    Google Scholar 

  • Goldszmidt M, Pearl J (1992) Rank-based systems: a simple approach to belief revision, belief update, and reasoning about evidence and actions. In: Nebel B, Rich C, Swartout WR (eds) Proceedings of 3rd international conference on principles of knowledge representation and reasoning (KR’92). Cambridge, MA, Oct. 25–29, Morgan Kaufmann, pp 661–672

    Google Scholar 

  • Goldszmidt M, Pearl J (1996) Qualitative probabilities for default reasoning, belief revision, and causal modeling. Artif Intell 84:57–112

    Article  MathSciNet  Google Scholar 

  • Goldvarg Y, Johnson-Laird PN (2001) Naive causality: a mental model theory of causal meaning and reasoning. Cogn Sci 25:565–610

    Article  Google Scholar 

  • Good IJ (1961) A causal calculus i. Br J Philos Sci 11:305–318

    Article  MathSciNet  Google Scholar 

  • Good IJ (1962) A causal calculus ii. Br J Philos Sci 12:43–51

    MathSciNet  Google Scholar 

  • Guyon I, Janzing D, Schölkopf B (2010) Causality: objectives and assessment. JMLR Proc 6:1–38

    Google Scholar 

  • Guyon I, Statnikov AR, Aliferis CF (2011) Time series analysis with the causality workbench. In: Popescu F, Guyon I (eds) Neural information processing systems (NIPS) mini-symposium on causality in time series, Vancouver, Dec. 10, 2009, JMLR Proceedings, vol 12, pp 115–139

    Google Scholar 

  • Haavelmo, T. (1943). The statistical implications of a system of simultaneous equations. Econometrica, 11(1-2):1–12. Reprinted in D. F. Hendry and M. S. Morgan (eds.), The Foundations of Econometric Analysis, Cambridge Univ. Pr., 477-490, 1995

    Google Scholar 

  • Hall N (2000) Causation and the price of transitivity. J Philos 97:198–222

    Article  Google Scholar 

  • Hall N (2007) Structural equations and causation. Philos Stud 132(1):109–136

    Article  MathSciNet  Google Scholar 

  • Halpern J (2016) Sufficient conditions for causality to be transitive. Philos Sci 583:213–226

    Article  MathSciNet  Google Scholar 

  • Halpern JY (2015) A modification of the Halpern-Pearl definition of causality. In: Yang Q, Wooldridge M (eds) Proceedings of 24th international joint conference on artificial intelligence (IJCAI’15), Buenos Aires, July 25–31, AAAI, pp 3022–3033

    Google Scholar 

  • Halpern JY (2017) Actual causality. MIT Press, Cambridge

    Book  MATH  Google Scholar 

  • Halpern JY, Hitchcock C (2015) Graded causation and defaults. Br J Philos Sci 66 (2):413–457

    Google Scholar 

  • Halpern JY, Pearl J (2001a) Causes and explanations: a structural-model approach - Part II: explanations. In: Nebel B (ed) Proceedings of 17th international joint conference on artificial intelligence (IJCAI’01), Morgan Kaufmann, Seattle, pp 27–34

    Google Scholar 

  • Halpern JY, Pearl J (2001b) Causes and explanations: a structural-model approach: Part 1: Causes. In: Breese JS, Koller D (eds) UAI ’ 01: Proceedings of 17th conference in uncertainty in artificial intelligence, Morgan Kaufmann, Seattle, pp 194–202

    Google Scholar 

  • Halpern JY, Pearl J (2005a) Causes and explanations: a structural-model approach. Part I: causes. Br J Philos Sci 56 (4):843–887

    Google Scholar 

  • Halpern JY, Pearl J (2005b) Causes and explanations: a structural-model approach. Part II: explanations. Br J Philos Sci 56 (4):889–911

    Google Scholar 

  • Hart HLA, Honoré T (1985) Causation in the Law. Oxford University Press, Oxford

    Google Scholar 

  • Hilpinen R (1997) On action and agency. In: Ejerhed E, Lindström S (eds) Logic, action and cognition - essays in philosophical logic, Kluwer Academic Publication, pp 3–27

    Google Scholar 

  • Hilton DJ, Slugoski BR (1986) Knowledge-based causal attribution: the abnormal conditions focus model. Psychol Rev 93:75–88

    Article  Google Scholar 

  • Hitchcock C (2001) The intransitivity of causation revealed in equations and graphs. J Philos 98(6):273–299

    Article  MathSciNet  Google Scholar 

  • Hitchcock C (2009) Structural equations and causation: six counterexamples. Philos Stud 144(3):391–401

    Article  Google Scholar 

  • Hobbs JR (2005) Toward a useful concept of causality for lexical semantics. J Semant 22(2):181–209

    Article  Google Scholar 

  • Huber F (2011) Lewis causation is a special case of Spohn causation. Br J Philos Sci 62:207–210

    Article  MathSciNet  Google Scholar 

  • Hume D (1748) An inquiry concerning human understanding. 3rd 1777 ed., republished in: Enquiries Concerning Human Understanding and Concerning the Principles of Morals, Oxford University Press, Oxford, 1971

    Google Scholar 

  • Iwasaki Y, Simon HA (1986a) Causality in device behavior. Artif Intell 29(1):3–32

    Google Scholar 

  • Iwasaki Y, Simon HA (1986b) Theories of causal ordering: reply to De Kleer and Brown. Artif Intell 29(1):63–72

    Google Scholar 

  • Kanger S (1972) Law and logic. Theoria 38:105–132

    Article  MathSciNet  MATH  Google Scholar 

  • Kayser D, Nouioua F (2009) From the textual description of an accident to its causes. Artif Intell 173(12–13):1154–1193

    Article  Google Scholar 

  • Keil FC (2006) Explanation and understanding. Ann Rev Psychol 57:227–254

    Article  Google Scholar 

  • Kleiman-Weiner M, Halpern JY (2018) Towards formal definitions of blameworthiness, intention, and moral responsibility. In: Proceedings of 32nd AAAI conference on artificial intelligence (AAAI’18), New Orleans

    Google Scholar 

  • Knobe J, Fraser B (2008) Causal judgement and moral judgement: two experiments. In Sinnott-Armstrong W (ed) Moral psychology, vol 2: the cognitive science of morality, MIT Press, pp 441–447

    Google Scholar 

  • Kraus S, Lehmann D, Magidor M (1990) Nonmonotonic reasoning, preferential models and cumulative logics. Artif Intell 44:167–207

    Article  MathSciNet  MATH  Google Scholar 

  • Kyburg Jr HE (2005) Book review – Judea Pearl, causality, Cambridge University Press, Cambridge, 2000. Artif Intell, 169:174–179

    Google Scholar 

  • Lagnado DA, Sloman SA (2005) Do we “do”? Cogn Sci 29:5–39

    Google Scholar 

  • Lehmann D, Magidor M (1992) What does a conditional knowledge base entail? Artif Intell 55:1–60

    Article  MathSciNet  MATH  Google Scholar 

  • Lewis D (1973) Causation. J Philos 70:556–567

    Article  Google Scholar 

  • Lewis D (1976) Probabilities of conditionals and conditional probabilities. Philosl Rev 85:297–315

    Article  Google Scholar 

  • Lewis D (1986) Philosophical papers, volume II. Oxford University Press, Oxford. Contains: ‘Causation’, with 6 postscripts to the original 1973 paper, pp. 159–213; ‘causal explanation’, pp. 214–240; ‘Events’, pp.241–270‘

    Google Scholar 

  • Lewis D (2000) Causation as influence. J Philos 97(4):182–197

    Article  Google Scholar 

  • Lin F (1995) Embracing causality in specifying the indirect effects of actions. In: Proceedings of 14th international joint conference on artificial intelligence (IJCAI’95), Morgan Kaufmann, Montréal, pp 1985–1993

    Google Scholar 

  • Lopez-Paz D, Nishihara R, Chintala S, Schölkopf B, Bottou L (2017) Discovering causal signals in images. In: Proceedings of 2017 IEEE conference on computer vision and pattern recognition, (CVPR’17), IEEE Computer Society, Honolulu, pp 58–66

    Google Scholar 

  • Mackie JL (1974) The cement of the universe: a study of causation. Oxford University Press, Oxford

    Google Scholar 

  • McCain N, Turner H (1995) A causal theory of ramifications and qualifications. In: Proceedings of 14th international joint conference on artificial intelligence (IJCAI’95). Morgan Kaufmann, Montréal, pp 1978–1984

    Google Scholar 

  • McEleney A, Byrne RMJ (2006) Spontaneous counterfactual thoughts and causal explanations. Think Reason 12(2):235–255

    Article  Google Scholar 

  • Meliou A, Gatterbauer W, Halpern JY, Koch C, Moore KF, Suciu D (2010) Causality in databases. IEEE Data Eng Bull 33(3):59–67

    Google Scholar 

  • Meliou A, Roy S, Suciu D (2014) Causality and explanations in databases. PVLDB 7(13):1715–1716

    Google Scholar 

  • Mumford S, Anjum RL (2013) Causation. A Very Short Introduction. Oxford University Press, Oxford

    Book  Google Scholar 

  • Novick LR, Cheng PW (2004) Assessing interactive causal influence. Psychol Rev 111(2):455–485

    Article  Google Scholar 

  • Over DE, Hadjichristidis C, Evans JSBT, Handley SJ, Sloman SA (2007) The probability of causal conditionals. Cogn Psychol 54:62–97

    Article  Google Scholar 

  • Paul LA, Hall N (2013) Causation. A User’s Guide, Oxford University Press, Oxford

    Google Scholar 

  • Pearl J (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann Publication

    Google Scholar 

  • Pearl J (1994) A probabilistic calculus of actions. In: de Mántaras RL, Poole D (eds) Proceedings of 10th annual conference on uncertainty in artificial intelligence (UAI’94), Seattle, July 29–31, Morgan Kaufmann, pp 454–462

    Google Scholar 

  • Pearl J (2000) Causality, 2nd revised edn. 2009 Cambridge University Press, Cambridge

    Google Scholar 

  • Pearl J (2013) Linear models: a useful “microscope” for causal analysis. J Causal Inference 1(1):155–170

    Article  Google Scholar 

  • Pearl J (2015) Trygve Haavelmo and the emergence of causal calculus. Econ Theory 31(1):152–179

    Article  MathSciNet  MATH  Google Scholar 

  • Pearl J, Mackenzie D (2018) The book of why. The new science of cause and effect. Basic Books, New York

    Google Scholar 

  • Pearl J, Glymour M, Jewell NP (2016) Causal inference in statistics: A Primer, Wiley, New York

    Google Scholar 

  • Peng Y, Reggia JA (1990) Abductive inference models for diagnostic problem-solving. Springer, Berlin

    Google Scholar 

  • Pörn I (1977) Action Theory and Social Science. D, Reidel, Synthese Library, Some Formal Models, p 120

    Google Scholar 

  • Prade H (2008) Responsibility judgments: Steps towards a formalization. In: Magdelena L, Ojeda-Aciego M, Verdegay J-L (eds) Proceedings of 12th international conference on information processing and management of uncertainty in knowledge-based systems (IPMU’08), Málaga, pp 145–152

    Google Scholar 

  • Reggia JA, Nau DS, Wang PY (1985a) A formal model of diagnosis inference i. problem formulation and decomposition. Inf Sci 37:227–256

    Google Scholar 

  • Reggia JA, Nau DS, Wang PY (1985b) A formal model of diagnosis inference ii. algorithmic solution and application. Inf Sci 37:257–285

    Google Scholar 

  • Reiter R (1987) A theory of diagnosis from first principles. Artif Intell 32:57–95

    Article  MathSciNet  MATH  Google Scholar 

  • Salmon WC (1984) Scientific explanation and the causal structure of the world. Princeton University Press, Princeton

    Google Scholar 

  • Sanchez E (1977) Solutions in composite fuzzy relation equations: Application to medical diagnosis in Brouwerian logic. In: Gupta MM, Saridis GN, Gaines BR (eds) Fuzzy automata and decision processes, North-Holland, pp 221–234

    Google Scholar 

  • Shafer G (1996) The art of causal conjecture. MIT Press, New York

    Google Scholar 

  • Shafer G (1998) Causal logic. In: Prade H (ed) Proceedings of 13th European conference on artificial intelligence (ECAI’98), Brighton, Wiley, New York, pp 711–720

    Google Scholar 

  • Shafer G (1999) Causal conjecture. In: Gammerman A (ed) Causal models and intelligent data management. Springer, Berlin, pp 17–32

    Google Scholar 

  • Shafer G (2000) Causality and responsibility. Cardozo Law Rev 22:101–123

    Google Scholar 

  • Shafer G, Gillett PR, Scherl RB (2000) The logic of events. Ann Math Artif Intell 28(1–4):315–389

    Article  MathSciNet  MATH  Google Scholar 

  • Shoham Y (1990) Nonmonotonic reasoning and causation. Cogn Sci 14(2):213–252

    Article  Google Scholar 

  • Shoham Y (1991) Remarks on simon’s comments. Cogn Sci 15(2):301–303

    Article  Google Scholar 

  • Simon H (1952) On the definition of causal relation. J Philos 49:517–528

    Article  Google Scholar 

  • Simon H (1953) Causal ordering and identifiability. In: Hood WC, Koopmans TC (eds) Studies in econometric methods. Wiley, New York, pp 49–74

    Google Scholar 

  • Simon H (1954) Spurious correlation: a causal interpretation. J Am Stat Assoc 49:467–479

    MATH  Google Scholar 

  • Simon H (1991) Nonmonotonic reasoning and causation: comment. Cogn Sci 15(2):293–300

    Article  Google Scholar 

  • Simon H, Rescher N (1966) Cause and counterfactual. Philos Sci 33(4):323–340

    Article  Google Scholar 

  • Spellman BA, Mandel DR (1999) When possibility informs reality. counterfactual thinking as a cue to causality. Curr Dir Psychol Sci 8 (4):120–123

    Google Scholar 

  • Spinoza B (1677) Ethics. Everyman paperbacks. Republished in 1992

    Google Scholar 

  • Spirtes P, Glymour C, Schienes R (1993) Causation, prediction and search. Springer, Berlin

    Book  MATH  Google Scholar 

  • Spohn W (2000) Bayesian nets are all there is to causal dependence. In: Costantini D (ed) Stochastic dependence and causality. CSLI Publication, Stanford, pp 157–172

    Google Scholar 

  • Spohn W (2006) Causation: an alternative. Br J Philos Sci 57:93–119

    Article  MathSciNet  MATH  Google Scholar 

  • Spohn W (2012) The laws of belief: ranking theory and its philosophical applications. Oxford University Press, Oxford

    Book  Google Scholar 

  • Stalnaker RC (1968) A theory of conditionals. In: Rescher N (ed) Studies in logical theory, Blackwell, pp 98–112

    Google Scholar 

  • Stein LA, Morgenstern L (1994) Motivated action theory: a formal theory of causal reasoning. Artif Intell 71(1):1–42

    Article  MathSciNet  MATH  Google Scholar 

  • Suppes P (1970) A probabilistic theory of causality. North-Holland Publication Company

    Google Scholar 

  • Thagard P (1989) Explanatory coherence. Behav Brain Sci 12:435–467

    Article  Google Scholar 

  • Thagard P (2000) Probabilistic networks and explanatory coherence. Cogn Sci Q 1:91–114

    Google Scholar 

  • Thagard P, Verbeurgt K (1998) Coherence as constraint satisfaction. Cogn Sci 22:1–24

    Article  Google Scholar 

  • Thielscher M (1997) Ramification and causality. Artif Intell 89(1–2):317–364

    Article  MathSciNet  MATH  Google Scholar 

  • Turner H (1999) A logic of universal causation. Artif Intell 113(1–2):87–123

    Article  MathSciNet  MATH  Google Scholar 

  • von Wright GH (1963) Norm and Action. Routledge and Keagan

    Google Scholar 

  • von Wright GH (1971) Explanation and understanding. Cornell University Press

    Google Scholar 

  • White G (2002) A modal formulation of McCain-Turner’s theory of causal reasoning. In: Flesca S, Greco S, Leone N, Ianni G (eds) Logics in artificial intelligence (Proceedings JELIA’02), LNCS, vol 2424. Springer, Berlin, pp 211–222

    Google Scholar 

  • Woodward J (2003) Making things happen: a theory of causal explanation. Oxford University Press, Oxford

    Google Scholar 

  • Wright S (1921) Correlation and causation. J Agric Res 20:557–585

    Google Scholar 

  • Zadeh LA (2002) Causality is undefinable. toward a theory of hierarchical definability. In: Meech JA, Veiga MM, Kawazoe Y, LeClair SR (eds) Intelligence in a materials world: selected papers from IPMM-2001, CRC, Boca Raton, pp 29–34

    Google Scholar 

Download references

Acknowledgements

This paper has partly benefited of the collective work, performed a decade ago, in the 3-year ANR research project MICRAC (2005-2008) dedicated to the study of causality modeling, whose participants included S. Benferhat, J.-F. Bonnefon, Ph. Chassy, R. Da Silva Neves, D. Dubois, F. Dupin de Saint-Cyr, D. Hilton, D. Kayser, F. Levy, F. Nouioua, S. Nouioua-Boutouhami and H. Prade.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Dubois .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dubois, D., Prade, H. (2020). A Glance at Causality Theories for Artificial Intelligence. In: Marquis, P., Papini, O., Prade, H. (eds) A Guided Tour of Artificial Intelligence Research. Springer, Cham. https://doi.org/10.1007/978-3-030-06164-7_9

Download citation

Publish with us

Policies and ethics