Skip to main content

Argumentation and Inconsistency-Tolerant Reasoning

  • Chapter
  • First Online:
A Guided Tour of Artificial Intelligence Research

Abstract

This chapter is devoted to logical models for reasoning from contradictory information. It deals with methods, such as argumentation, that refrain from giving up any piece of information (by contrast with revision, as discussed in chapter “Main Issues in Belief Revision, Belief Merging and Information Fusion” of this volume). The baseline is to get the best, resorting to various possibilities, from the available information in order to reason in the most sensible way despite contradictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that there exist other works, not described here, exploiting partial preorderings (Cayrol et al. 1993; Brewka 1994; Benferhat and Garcia 2002; Benferhat and Yahi 2012; Cayrol et al. 2014).

  2. 2.

    This ordering only depends on the stratum having the highest priority in which at least one formula has been removed for restoring consistency.

  3. 3.

    The subbases maximal for the preference based on set-inclusion are also called subtheories in (Brewka 1989) and correspond exactly to the strongly maximal consistent subbases of Dubois et al. (1991).

  4. 4.

    This principle consists in keeping among the credulous consequences only those such that their negation is not credulously inferred (Benferhat et al. 1993b). This inference is said argumentative.

  5. 5.

    Note that the Bo-preferred subbases are not presented here. Nevertheless all of them respect a common property: they contain the two formulae e and \(e \rightarrow b\) and so they entail e and b.

  6. 6.

    There are plenty of other references.

References

  • Adjiman P, Chatalic P, Goasdoué F, Rousset MC, Simon L (2004) Distributed reasoning in a peer-to-peer setting, short paper. In: 16th European conference on artificial intelligence (ECAI’04, (ed) Lopez de Mántaras R, Saitta L. IOS, Valencia, Spain, pp 945–946

    Google Scholar 

  • Adjiman P, Chatalic P, Goasdoué F, Rousset MC, Simon L (2005) Scalability study of peer-to-peer consequence finding. In: Pack Kaelbling L, Saffiotti A (eds) 19th international joint conference on artificial intelligence (IJCAI’05). Professional Book Center, Edinburgh, Scotland, U.K., pp 351–356

    Google Scholar 

  • Adjiman P, Chatalic P, Goasdoué F, Rousset MC, Simon L (2006) Distributed reasoning in a peer-to-peer setting: application to the semantic web. J Artif Intell Res 25:269–314

    Google Scholar 

  • Amgoud L (2012a) The outcomes of logic-based argumentation systems under preferred semantics. In: Hüllermeier E, Link S, Seeger B (eds) 6th international conference on scalable uncertainty management (SUM’12), vol 7520. Lecture notes in artificial intelligence. Springer, Germany, pp 72–84

    Google Scholar 

  • Amgoud L (2012b) Stable semantics in logic-based argumentation systems. In: Hüllermeier E, Link S, Seeger B (eds) 6th international conference on scalable uncertainty management (SUM’12), vol 7520. Lecture notes in artificial intelligence. Springer, Germany, pp 58–71

    Google Scholar 

  • Amgoud L, Ben-Naim J (2013) Ranking-based semantics for argumentation frameworks. In: Liu W, Subrahmanian V, Wijsen J (eds) 7th international conference on scalable uncertainty management (SUM’13), vol 8078. Lecture notes in artificial intelligence. Springer, USA, pp 134–147

    Google Scholar 

  • Amgoud L, Ben-Naim J (2015) Argumentation-based ranking logics. In: Weiss G, Yolum P, Bordini R, Elkind E (eds) 14th international conference on autonomous agents and multiagent systems (AAMAS’15). ACM, Istanbul, Turkey, pp 1511–1519

    Google Scholar 

  • Amgoud L, Ben-Naim J (2016) Axiomatic foundations of acceptability semantics. In: Baral C, Delgrande J, Wolter F (eds) 15th international conference on principles of knowledge representation and reasoning (KR’16). AAAI, Cape Town, South Africa, pp 2–11

    Google Scholar 

  • Amgoud L, Ben-Naim J (2018) Weighted bipolar argumentation graphs: Axioms and semantics. In: 27th international joint conference on artificial intelligence (IJCAI’18), Stockholm, Sweden

    Google Scholar 

  • Amgoud L, Besnard P (2009) Bridging the gap between abstract argumentation systems and logic. In: Godo L, Pugliese A (eds) 3rd international conference on scalable uncertainty management, vol 5785. Lecture notes in artificial intelligence. Springer, USA, pp 12–27

    Google Scholar 

  • Amgoud L, Kaci S (2007) An argumentation framework for merging conflicting knowledge bases. Int J Approx Reason 45(2):321–340

    Article  MathSciNet  MATH  Google Scholar 

  • Amgoud L, Prade H (2009) Using arguments for making and explaining decisions. Artif Intell J 173(3–4):413–436

    Article  MathSciNet  MATH  Google Scholar 

  • Amgoud L, Ben-Naim J, Doder D, Vesic S (2016) Ranking arguments with compensation-based semantics. In: Baral C, Delgrande J, Wolter F (eds) 15th international conference on principles of knowledge representation and reasoning (KR’16). AAAI, South Africa, pp 12–21

    Google Scholar 

  • Amgoud L, Ben-Naim J, Doder D, Vesic S (2017) Acceptability semantics for weighted argumentation frameworks. In: Sierra C (ed) 26th international joint conference on artificial intelligence (IJCAI’17). Melbourne, Australia, pp 56–62

    Google Scholar 

  • Anderson A, Belnap N (1975) Entailment: the logic of relevance and necessity, vol 1. Princeton University, Princeton

    MATH  Google Scholar 

  • Arieli O, Avron A (1996) Reasoning with logical bilattices. J Log, Lang Inf 5(1):25–63

    Article  MathSciNet  MATH  Google Scholar 

  • Aubry G, Risch V (2005) Toward a logical tool for generating new arguments in an argumentation-based framework. In: 17th. IEEE international conference on tools with artificial intelligence (ICTAI’05). IEEE Computer Society, China, pp 599–603

    Google Scholar 

  • Baroni P, Cerutti F, Giacomin M, Guida G (2011) AFRA: Argumentation framework with recursive attacks. Int J Approx Reason 52(1):19–37

    Article  MathSciNet  MATH  Google Scholar 

  • Baroni P, Rago A, Toni F (2018) How many properties do we need for gradual argumentation? In: 32nd AAAI conference on artificial intelligence (AAAI’18), New Orleans, USA

    Google Scholar 

  • Bench-Capon TJM (2003) Persuasion in practical argument using value-based argumentation frameworks. J Log Comput 13(3):429–448

    Article  MathSciNet  MATH  Google Scholar 

  • Bench-Capon TJM, Doutre S, Dunne PE (2007) Audiences in argumentation frameworks. Artif Intell 171(1):42–71

    Article  MathSciNet  MATH  Google Scholar 

  • Benferhat S, Garcia L (2002) Handling locally stratified inconsistent knowledge bases. Studia Logica 70(1):77–104

    Article  MathSciNet  MATH  Google Scholar 

  • Benferhat S, Yahi S (2012) Étude comparative des relations d’inférence à partir de bases de croyances partiellement préordonnées. Revue d’Intelligence Artificielle 26(1–2):39–61

    Article  Google Scholar 

  • Benferhat S, Cayrol C, Dubois D, Lang J, Prade H (1993a) Inconsistency management and prioritized syntax-based entailment. In: Bajcsy R (ed) 13th international joint conference on artificial intelligence (IJCAI’93). Morgan Kaufmann, France, pp 640–645

    Google Scholar 

  • Benferhat S, Dubois D, Prade H (1993b) Argumentative inference in uncertain and inconsistent knowledge bases. In: Heckerman D, Mamdani A (eds) 9th conference on uncertainty in artificial intelligence. Morgan Kaufmann, USA, pp 411–419

    Google Scholar 

  • Benferhat S, Bonnefon JF, Da Silva Neves R (2005) An overview of possibilistic handling of default reasoning: an experimental study. Synthese 146(1–2):53–70

    Article  MathSciNet  MATH  Google Scholar 

  • Besnard P, Hunter A (1995) Quasi-classical logic: Non-trivializable classical reasoning from inconsistent information. In: Froidevaux C, Kohlas J (eds) 3rd European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty (ECSQARU’95), Springer, Fribourg, Switzerland, Lecture Notes in Artificial Intelligence, vol 946, pp 44–51

    Google Scholar 

  • Besnard P, Hunter A (2001) A logic-based theory of deductive arguments. Artif Intell 128(1–2):203–235

    Article  MathSciNet  MATH  Google Scholar 

  • Besnard P, Hunter A (2008) Elements of argumentation. MIT, USA

    Book  Google Scholar 

  • Besnard P, Schaub T (1998) Signed systems for paraconsistent reasoning. J Autom Reason 20(1):191–213

    Article  MathSciNet  MATH  Google Scholar 

  • Binas A, McIlraith S (2008) Peer-to-peer query answering with inconsistent knowledge. In: Brewka G, Lang J (eds) 11th international conference on principles of knowledge representation and reasoning, Morgan Kaufmann, Australia, pp 329–339, http://www.cs.toronto.edu/~sheila/publications/bin-mci-kr08.pdf

  • Boella G, Gabbay D, van der Torre L, Villata S (2010) Support in abstract argumentation. In: Baroni P, Cerutti F, Giacomin M, Simari G (eds) Computational models of argument (COMMA’10), Frontiers in artificial intelligence and applications, vol 216. IOS. Desenzano del Garda, Italy, pp 111–122

    Google Scholar 

  • Bonet B, Geffner H (1996) Arguing for decisions: A qualitative model of decision making. In: Horvitz E, Jensen FV (eds) 12th conference on uncertainty in artificial intelligence (UAI’96). Morgan Kaufmann, USA, pp 98–105

    Google Scholar 

  • Bonzon E, Delobelle J, Konieczny S, Maudet N (2017) A parametrized ranking-based semantics for persuasion. In: Moral S, Pivert O, Sánchez D, Marín N (eds) 11th international conference on scalable uncertainty management (SUM’17), vol 10564. Lecture notes in computer science. Granada, Spain, pp 237–251

    Google Scholar 

  • Brewka G (1989) Preferred subtheories: An extended logical framework for default reasoning. In: Sridharan NS (ed) 11th International Joint Conference on Artificial Intelligence (IJCAI’89). Morgan Kaufmann, Detroit (MI), USA, pp 1043–1048

    Google Scholar 

  • Brewka G (1994) Reasoning about priorities in default logic. In: Hayes-Roth B, Korf RE (eds) 12th national conference on artificial intelligence (AAAI’94). AAAI/MIT, USA, pp 940–945

    Google Scholar 

  • Carnielli W, Coniglio ME (2016) Paraconsistent logic: consistency, contradiction and negation, logic, epistemology, and the unity of science, vol 40. Springer, Berlin

    Google Scholar 

  • Cayrol C (1995) On the relation between argumentation and non-monotonic coherence-based entailment. In: Mellish CS (ed) 14th international joint conference on artificial intelligence (IJCAI’95). Morgan Kaufmann, Canada, pp 1443–1448

    Google Scholar 

  • Cayrol C, Lagasquie-Schiex MC (1995) Non-monotonic syntax-based entailment: a classification of consequence relations. In: Froidevaux C, Kohlas J (eds) 3rd European conference on symbolic and quantitative approaches to reasoning and uncertainty (ECSQARU’95), vol 946. Lecture notes in artificial intelligence. Springer, Switzerland, pp 107–114

    Google Scholar 

  • Cayrol C, Lagasquie-Schiex MC (2005) Graduality in argumentation. J Artif Intell Res 23:245–297

    Google Scholar 

  • Cayrol C, Lagasquie-Schiex MC (2013) Bipolarity in argumentation graphs: towards a better understanding. Int J Approx Reason 5(7):876–899. https://doi.org/10.1016/j.ijar.2013.03.001

  • Cayrol C, Royer V, Saurel C (1993) Management of preferences in assumption-based reasoning. In: Yager R, Bouchon B (eds) Advanced Methods in Artificial Intelligence, Lecture Notes in Artificial Intelligence, vol 682, Springer, pp 13–22, extended version in Technical Report IRIT-CERT, 92-13R (University Paul Sabatier Toulouse)

    Google Scholar 

  • Cayrol C, Lagasquie-Schiex MC, Schiex T (1998) Nonmonotonic reasoning: from complexity to algorithms. Ann Math Artif Intell 22(3–4):207–236

    Article  MathSciNet  MATH  Google Scholar 

  • Cayrol C, Dubois D, Touazi F (2014) On the semantics of partially ordered bases. In: Beierle C, Meghini C (eds) 8th international symposium on foundations of information and knowledge systems (FoIKS’14), vol 8367. Lecture notes in artificial intelligence. Springer, France, pp 136–153

    Google Scholar 

  • Chatalic P, Nguyen GH, Rousset MC (2006) Reasoning with inconsistencies in propositional peer-to-peer inference systems. In: Brewka G, Coradeschi S, Perini A, Traverso P (eds) 17th European conference on artificial intelligence (ECAI’06). IOS, Italy, pp 352–357

    Google Scholar 

  • da Costa NCA (1974) On the theory of inconsistent formal systems. Notre Dame J Form Log 15(4):497–510

    Google Scholar 

  • da Costa Pereira C, Tettamanzi A, Villata S (2011) Changing one’s mind: Erase or rewind? In: Walsh T (ed) 22nd international joint conference on artificial intelligence (IJCAI’11). IJCAI/AAAI, Barcelona, Spain, pp 164–171

    Google Scholar 

  • Da Silva Neves R, Bonnefon JF, Raufaste E (2002) An empirical test of patterns for nonnomotonic reasoning. Ann Math Artif Intell 34(1–3):107–130

    Google Scholar 

  • Dubois D, Lang J, Prade H (1991) Inconsistency in possibilistic knowledge bases - to live or not to live with it. In: Zadeh LA, Kacprzyk J (eds) Fuzzy logic for the management of uncertainty. Wiley, New York, pp 335–351

    Google Scholar 

  • Dubois D, Konieczny S, Prade H (2003) Quasi-possibilistic logic and its measures of information and conflict. Fundamenta Informaticæ 57(2–4):101–125

    MathSciNet  MATH  Google Scholar 

  • Dung PM (1995) On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and \(n\)-person games. Artif Intell J 77(2):321–357

    Article  MathSciNet  MATH  Google Scholar 

  • Dunne P, Hunter A, McBurney P, Parsons S, Wooldridge M (2011) Weighted argument systems: Basic definitions, algorithms, and complexity results. Artif Intell J 175(2):457–486

    Article  MathSciNet  MATH  Google Scholar 

  • Elvang-Gøransson M, Hunter A (1995) Argumentative logics: reasoning from classically inconsistent information. Data Knowl Eng 16(2):125–145

    Article  MATH  Google Scholar 

  • Fouqueré C, Quatrini M (2012) Un cadre formel issu de la théorie de la démonstration pour la théorie de l’argumentation. Math Soc Sci 2(198):49–83

    MATH  Google Scholar 

  • Gärdenfors P, Makinson D (1994) Nonmonotonic inference based on expectations. Artif Intell J 65:197–245

    Article  MathSciNet  MATH  Google Scholar 

  • Geffner H (1992) Default reasoning: causal and conditional theories. MIT, USA

    Google Scholar 

  • Gottlob G (1992) Complexity results for nonmonotonic logics. J Log Comput 2(3):397–425

    Article  MathSciNet  MATH  Google Scholar 

  • Grant J, Martinez MV (eds) (2018) Measuring inconsistency in information, studies in logic, vol 73. College Publications

    Google Scholar 

  • Hunter A (2002) Measuring inconsistency in knowledge via quasi-classical models. In: Dechter R, Sutton R (eds) 18th american national conference on artificial intelligence (AAAI’2002). AAAI/MIT, Canada, pp 68–73

    Google Scholar 

  • Hunter A, Konieczny S (2010) On the measure of conflicts: shapley inconsistency values. Artif Intell J 174(14):1007–1026

    Article  MathSciNet  MATH  Google Scholar 

  • Jaśkowski S (1948) Rachunek zdań dla systemów dedukcyjnych sprzecznych. Studia Societatis Scientiarum Torunensis, Sectio A I:55–77, translated as “Propositional Calculus for Contradictory Deductive System” in Studia Logica 24 (1969), pp. 143–157 and also in Logic and Logical Philosophy 7 (1999), pp. 35–56

    Google Scholar 

  • Konieczny S, Lang J, Marquis P (2003) Quantifying information and contradiction in propositional logic through test actions. In: Gottlob G, Walsh T (eds) 18th international joint conference on artificial intelligence (IJCAI’03). Morgan Kaufmann, Mexico, pp 106–111

    Google Scholar 

  • Kraus S, Lehmann D, Magidor M (1990) Nonmonotonic reasoning, preferential models and cumulative logics. Artif Intell J 44(1–2):167–207

    Article  MathSciNet  MATH  Google Scholar 

  • Lang J, Marquis P (2000) In search of the right extension. In: Cohn AG, Giunchiglia F, Selman B (eds) 7th international conference on principles of knowledge representation and reasoning (KR’00). Morgan Kaufmann, USA, pp 625–636

    Google Scholar 

  • Lang J, Marquis P (2010) Reasoning under inconsistency: a forgetting-based approach. Artif Intell 174(12–13):799–823

    Article  MathSciNet  MATH  Google Scholar 

  • Lehmann D (1995) Another perspective on default reasoning. Ann Math Artif Intell 15(1):61–82

    Article  MathSciNet  MATH  Google Scholar 

  • Leite J, Martins J (2011) Social abstract argumentation. In: Walsh T (ed) 22nd international joint conference on artificial intelligence (IJCAI’11). IJCAI/AAAI, Spain, pp 2287–2292

    Google Scholar 

  • Martínez DC, García A, Simari G (2008) An abstract argumentation framework with varied-strength attacks. In: Brewka G, Lang J (eds) 11th international conference on principles of knowledge representation and reasoning (KR’08). AAAI, Australia, pp 135–144

    Google Scholar 

  • Martinez MV, Molinaro C, Subrahmanian VS, Amgoud L (2013) A general framework for reasoning on inconsistency. Springer Briefs in Computer Science, Springer

    Google Scholar 

  • Matt P, Toni F (2008) A game-theoretic measure of argument strength for abstract argumentation. In: Hölldobler S, Lutz C, Wansing H (eds) 11th European conference on logics in artificial intelligence (JELIA’08). Springer, Germany, pp 285–297

    Google Scholar 

  • Modgil S (2009) Reasoning about preferences in argumentation frameworks. Artif Intell J 173(9–10):901–1040

    Article  MathSciNet  MATH  Google Scholar 

  • Mozina M, Zabkar J, Bratko I (2007) Argument-based machine learning. Artif Intell J 171(10–15):922–937

    Article  MathSciNet  MATH  Google Scholar 

  • Nebel B (1991) Belief revision and default reasoning: Syntax-based approaches. In: Allen JA, Fikes R, Sandewall E (eds) 2nd international conference on principles of knowledge representation and reasoning (KR’91). Morgan Kaufmann, USA, pp 417–428

    Google Scholar 

  • Nouioua F, Risch V (2012) A reconstruction of abstract argumentation admissible semantics into defaults and answer sets programming. In: Filipe J, Fred ALN (eds) 4th international conference on agents and artificial intelligence (ICAART’12), vol 1. SciTe, Portugal, pp 237–242

    Google Scholar 

  • Øgaard TF (2016) Paths to triviality. Philos Log 45(3):237–276

    Google Scholar 

  • Payette G (2015) Getting the most out of inconsistency. Philos Log 44(5):573–592

    Article  MathSciNet  MATH  Google Scholar 

  • Perelman C, Olbrechts-Tyteca L (1958) Traité de l’argumentation : La nouvelle rhétorique. Éditions de l’Université Libre de Bruxelles, adapted and translated in 1969 as: “The New Rhetoric: A Treatise on Argumentation”. Notre Dame University Press

    Google Scholar 

  • Pinkas G, Loui RP (1992) Reasoning from inconsistency: A taxonomy of principles for resolving conflict. In: Nebel B, Rich C, Swartout WR (eds) 3rd international conference on principles of knowledge representation and reasoning (KR’92). Morgan Kaufmann, USA, pp 709–719

    Google Scholar 

  • Plantin C (1996) L’argumentation. Mémos Seuil, Seuil

    Google Scholar 

  • Poole D (1988) A logical framework for default reasoning. Artif Intell 36(1):27–47

    Article  MathSciNet  MATH  Google Scholar 

  • Prakken H, Sartor G (1997) Argument-based extended logic programming with defeasible priorities. J Appl Non-Class Log 7(1):25–75

    Article  MathSciNet  MATH  Google Scholar 

  • Priest G (1987) In Contradiction. Martinus Nijhoff, The Hague, The Netherlands

    Google Scholar 

  • Priest G (1991) Minimally inconsistent LP. Studia Logica 50:321–331

    Article  MathSciNet  MATH  Google Scholar 

  • Pu F, Luo J, Zhang Y, Luo G (2014) Argument ranking with categoriser function. In: Buchmann R, Kifor C, Yu J (eds) 7th international knowledge science, engineering and management conference (KSEM’14). Springer, Romania, pp 290–301

    Google Scholar 

  • Rahman S (2001) On Frege’s nightmare. a combination of intuitionistic, free and paraconsistent logics. In: Wansing H (ed) Essays on non-classical logic. World Scientific, pp 61–85

    Google Scholar 

  • Reiter R (1980) A logic for default reasoning. Artif Intell J 13(1–2):81–132

    Article  MathSciNet  MATH  Google Scholar 

  • Rescher N, Brandom R (1979) The logic of inconsistency. Blackwell

    Google Scholar 

  • Rescher N, Manor R (1970) On inference from inconsistent premises. Theory Decis 1(2):179–217

    Article  MATH  Google Scholar 

  • Ripley D (2015) Paraconsistent logic. Philos Log 44(6):771–780

    Article  MathSciNet  MATH  Google Scholar 

  • Simari G, Loui RP (1992) A mathematical treatment of defeasible reasoning and its implementation. Artif Intell J 53(2–3):125–157

    Article  MathSciNet  MATH  Google Scholar 

  • Tarski A (1956) Logic, semantics, metamathematics. Woodger EH (ed) Chap On some fundamental concepts of metamathematics. Oxford University, Oxford

    Google Scholar 

  • Tennant N (1987) Natural deduction and sequent calculus for intuitionistic relevant logic. J Symb Log 52(3):665–680

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Amgoud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amgoud, L., Besnard, P., Cayrol, C., Chatalic, P., Lagasquie-Schiex, MC. (2020). Argumentation and Inconsistency-Tolerant Reasoning. In: Marquis, P., Papini, O., Prade, H. (eds) A Guided Tour of Artificial Intelligence Research. Springer, Cham. https://doi.org/10.1007/978-3-030-06164-7_13

Download citation

Publish with us

Policies and ethics