Skip to main content

Phytochemistry and Bioactivity of Solanum betaceum Cav

  • Living reference work entry
  • First Online:
Bioactive Compounds in Underutilized Fruits and Nuts

Abstract

Solanum betaceum belongs to the Solanaceae family. Its fruit is mainly consumed in South America, but in recent years, it has been distributed to other regions. The different varieties of this fruit are closely linked to its components. Nutritionally, they contain an excellent source of vitamin C and also provide vitamins A, B6, and E. However, in this chapter, we will review the nutritional differences according to the region in which S. betaceum is grown in addition to its phytochemical composition and the possible biological activities that have been studied for this fruit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

5-CQA:

5-Caffeoylquinic acid

ACE:

Angiotensin converting enzyme

ACF:

Aberrant foci of colon

AChE:

Acetylcholinesterase

AR:

Rosmarinic acid

ARE:

Antioxidant response element

CAT:

Catalase enzyme

CGAs:

Chlorogenic acids

DMH:

1,2-Dimethylhidrazine

DNA:

Deoxyribonucleic acid

EtOH:

Ethanol

GC-MS:

Gas Chromatography coupled with Mass Spectrometry

GPx:

Guttation peroxidase

HDL-C:

High density lipoprotein cholesterol

HPLC–DAD–ESI/MS:

High Performance Liquid Chromatography coupled with Diode array detection and Mass Spectrometry equipped with an electrospray ionization source

HPLC–DAD–MS/MS:

High Performance Liquid Chromatography coupled to diode array detection and Mass Spectrometry

HPLC–DAD–MSn:

High Performance Liquid Chromatography coupled with Diode array detection and tandem Mass Spectrometry

HS–SPME–GC–MS:

Headspace Solid-Phase Microextraction coupled with Gas Chromatography-Mass Spectrometry

IC50:

Half maximal inhibitory concentration

IL-6:

Interleukin 6

JNK:

Mitogen-activated protein kinases

LC–MS/MS:

Liquid Chromatography coupled with Mass Spectrometry

LC–TOF–MS:

Liquid Chromatography coupled with Time-of-Flight and Mass Spectrometry

LDL-C:

Low-density lipoprotein

MAPK:

Mitogen-activated protein kinases

MTT test:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium

NADPH:

Dihydronicotinamide-adenine dinucleotide phosphate

NF-E2 (Nrf2):

Activating protein 1 and nuclear factor erythroid 2

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NMR–1D/2D:

Nuclear Magnetic Resonance analyses of one-dimensional (1D) and Two-dimensional (2D)

p38:

Mitogen-activated protein kinases

PEE:

Phenolic enriched extract

PII:

Invertase inhibitory protein

ROS:

Reactive oxygen species

SC50:

Scavenging concentration 50%

SOD:

Superoxide dismutase

TA-98:

Salmonella typhimurium strain TA-98

TA-100:

Salmonella typhimurium strain TA-100

TAS:

Total antioxidant status

TNF-α:

Tumor necrosis factor alpha

UV/Vis:

Ultraviolet–Visible spectroscopy

References

  1. Li Y, Zhang JJ, Xu DP et al (2016) Bioactivities and health benefits of wild fruits. Int J Mol Sci 17(8):1258. https://doi.org/10.3390/ijms17081258

    Article  CAS  PubMed Central  Google Scholar 

  2. Acosta-Quezada PG, Raigón MD, Riofrío-Cuenca T et al (2015) Diversity for chemical composition in a collection of different varietal types of tree tomato (Solanum betaceum Cav.), an Andean exotic fruit. Food Chem 169:327–335. https://doi.org/10.1016/j.foodchem.2014.07.152

    Article  CAS  PubMed  Google Scholar 

  3. Kaunda JS, Zhang Y-J (2019) The genus Solanum: an ethnopharmacological, phytochemical and biological properties review. Nat Prod Bioprospect 9(2):77–137

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ramírez F, Kallarackal J (2019) Tree tomato (Solanum betaceum Cav.) reproductive physiology: a review. Sci Hortic (Amsterdam) 248:206–215. https://doi.org/10.1016/j.scienta.2019.01.019

    Article  Google Scholar 

  5. Buono S, Aguirre CM, Abdo G, Perondi HM, Ansonnaud G (2018) Tomate árbol Solanun betaceum. IIICA, Montevideo

    Google Scholar 

  6. Hassan SHA, Bakar MFA (2013) Antioxidative and anticholinesterase activity of Cyphomandra betacea fruit. Sci World J 13. https://doi.org/10.1155/2013/278071

    Article  Google Scholar 

  7. Bohs L (1989) Ethnobotany of the genus Cyphomandra (Solanaceae). Econ Bot 43:143–163

    Article  Google Scholar 

  8. Bohs L (1995) Transfer of Cyphomandra (Solanaceae) and its species to Solanum. Taxon 44(4):583–587. http://www.jstor.org/stable/1223500

    Article  Google Scholar 

  9. Duarte O, Paull R (2015) Exotic fruits and nuts of the New World. CABI, Boston

    Book  Google Scholar 

  10. Dawes S, Pringle G (2013) Subtropical fruits from South and Central America. In: Wratt GS, Smith HC (eds) Plant breeding in New Zealand. Butterworth-Heinemann. 123–138

    Google Scholar 

  11. Schotsmans WC, East A, Woolf A (2011) Tamarillo (Solanum betaceum (Cav.)). In: Postharvest biology and technology of tropical and subtropical fruits. Woodhead Publishing, Oxford, pp 427–442

    Chapter  Google Scholar 

  12. Marquez C, Carlos J, Otero E, Claudia M (2007) Changes physiological, textural, physicochemical and microestructural of the tree tomato (Cyphomandra betacea S.) at postharvest. Vitae 14(2):07–08

    Google Scholar 

  13. Tene V, Malagon O, Finzi PV et al (2007) An ethnobotanical survey of medicinal plants used in Loja and Zamora-Chinchipe, Ecuador. J Ethnopharmacol 111:63–81

    Article  Google Scholar 

  14. Gutierrez R, Vidal L, Barrera N, Cadena R (2000) Synopsis of Colombian species of gender Cyphomandra (Solanaceae) transferred to Solanum. Acta Agron 50:7–19

    Google Scholar 

  15. Lacroix D, Prado S, Kamoga D et al (2011) Antiplasmodial and cytotoxic activities of medicinal plants traditionally used in the village of Kiohima, Uganda. J Ethnopharmacol 133:850–855. https://doi.org/10.1016/j.jep.2010.11.013

    Article  PubMed  Google Scholar 

  16. Colombian Family Welfare Institute, National University of Colombia (2015). Colombian Food Composition Table. 7- Edition, ICBF, Santa Fe de Bogotá

    Google Scholar 

  17. Ministry of Social Welfare and Health (1975) Table of composition of Ecuadorian food. Guayaquil

    Google Scholar 

  18. National Food and Nutrition Center National Health Institute (2009) Peruvian tables of food composition. Lima

    Google Scholar 

  19. New Zealand Food Composition Database. 2019. The Concise New Zealand Food Composition Tables, 13th Edition 2018. The New Zealand Institute for Plant and Food Research Limited and Ministry of Health

    Google Scholar 

  20. Lister CE, Morrison SC, Kerkhofs NS, Wright KM (2005) The nutritional composition and health benefits of New Zealand tamarillos. Crop Food Res 1281:29

    Google Scholar 

  21. Li Z, Scott K, Hemar Y, Otter D (2018) Protease activity of enzyme extracts from tamarillo fruit and their specific hydrolysis of bovine caseins. Food Res Int 109:380–386. https://doi.org/10.1016/j.foodres.2018.04.039

    Article  CAS  PubMed  Google Scholar 

  22. Romero-Rodriguez MA, Vazquez-Oderiz ML, Lopez-Hernandez J, Simal-Lozano J (1994) Composition of babaco, feijoa, passionfruit and tamarillo produced in Galicia (North-west Spain). Food Chem 49:23–27. https://doi.org/10.1016/0308-8146(94)90227-5

    Article  CAS  Google Scholar 

  23. Vasco C, Ruales J, Kamal-Eldin A (2008) Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chem 111:816–823. https://doi.org/10.1016/j.foodchem.2008.04.054

    Article  CAS  Google Scholar 

  24. Orqueda ME, Rivas M, Zampini IC et al (2017) Chemical and functional characterization of seed, pulp and skin powder from chilto (Solanum betaceum), an Argentine native fruit. Phenolic fractions affect key enzymes involved in metabolic syndrome and oxidative stress. Food Chem 216:70–79. https://doi.org/10.1016/j.foodchem.2016.08.015

    Article  CAS  PubMed  Google Scholar 

  25. Torres A (2012) Physical, chemical and bioactive compounds of mature tomato tree pulp (Cyphomandra betacea) (Cav.) Sendtn. Arch Latinoam Nutr 62:381–388

    CAS  PubMed  Google Scholar 

  26. Durant AA, Rodríguez C, Santana AI et al (2013) Analysis of volatile compounds from Solanum betaceum Cav. fruits from Panama by head-space micro extraction. Rec Nat Prod 7:15–26

    CAS  Google Scholar 

  27. De Rosso VV, Mercadante AZ (2007) HPLC-PDA-MS/MS of anthocyanins and carotenoids from dovyalis and tamarillo fruits. J Agric Food Chem 55:9135–9141. https://doi.org/10.1021/jf071316u

    Article  CAS  PubMed  Google Scholar 

  28. Osorio C, Hurtado N, Dawid C et al (2012) Chemical characterisation of anthocyanins in tamarillo (Solanum betaceum Cav.) and Andes berry (Rubus glaucus Benth.) fruits. Food Chem 132:1915–1921. https://doi.org/10.1016/j.foodchem.2011.12.026

    Article  CAS  Google Scholar 

  29. García JM, Prieto LJ, Guevara A et al (2016) Chemical studies of yellow tamarillo (Solanum betaceum Cav.) fruit flavor by using a molecular sensory approach. Molecules 21:1–11. https://doi.org/10.3390/molecules21121729

    Article  CAS  Google Scholar 

  30. Espin S, Gonzalez-Manzano S, Taco V et al (2016) Phenolic composition and antioxidant capacity of yellow and purple-red Ecuadorian cultivars of tree tomato (Solanum betaceum Cav.). Food Chem 194:1073–1080. https://doi.org/10.1016/j.foodchem.2015.07.131

    Article  CAS  PubMed  Google Scholar 

  31. Mertz C, Brat P, Caris-Veyrat C, Gunata Z (2010) Characterization and thermal lability of carotenoids and vitamin C of tamarillo fruit (Solanum betaceum Cav.). Food Chem 119:653–659. https://doi.org/10.1016/j.foodchem.2009.07.009

    Article  CAS  Google Scholar 

  32. Bagchi D, Preuss HG (2013) Obesity: epidemiology, pathophysiology, and prevention, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  33. Prieto Pabon LJ (2016) Study of the bioactive compounds responsible for the flavor of tree tomato var. yellow (Solanum betaceum Cav.). Doctoral dissertation, Universidad Nacional de Colombia-Sede Bogotá.

    Google Scholar 

  34. Camacho Dillon DK (2019) Physicochemical and functional characterization of a population of tree tomato segregators (Solanum betaceum). BS thesis. Quito: UCE

    Google Scholar 

  35. Ayu Kadek Diah Puspawati G, Marsono Y, Armunanto R, Supriyadi S (2018) Inhibitory potency of Indonesian Tamarillo (Solanum betaceum Cav.) crude extract against α-glucosidase enzyme activity. Curr Res Nutr Food Sci J 6:392–403. https://doi.org/10.12944/crnfsj.6.2.14

    Article  Google Scholar 

  36. Torres PA, Guinand QJ (2013) Effect of dietary intake with tomato (Lycopersicum esculentum) and tree tomato (Cyphomandra betacea (Cav.) Sendtn) on the blood lipids of rats. Rev Chil Nutr 40:376–382. https://doi.org/10.4067/s0717-75182013000400008

    Article  Google Scholar 

  37. Abdul Kadir NAA, Rahmat A, Jaafar HZE (2015) Protective effects of tamarillo (Cyphomandra betacea) extract against high fat diet induced obesity in Sprague-Dawley rats. J Obes 2015. https://doi.org/10.1155/2015/846041

    Article  Google Scholar 

  38. Salazar-Lugo R, Barahona A, Ortiz K et al (2016) Effect of consumption of tree tomato juice (Cyphomandra betacea) on the lipid profile and glucose proteins in adults with hyperlipidemia, Ecuador. Arch Latinoam Nutr 66:121–128

    PubMed  Google Scholar 

  39. Erdmann G, Rita C, Fernanda M et al (2015) Structure of an arabinogalactan from the edible tropical fruit tamarillo (Solanum betaceum) and its antinociceptive activity. Carbohydr Polym 116:300–306. https://doi.org/10.1016/j.carbpol.2014.03.032

    Article  CAS  Google Scholar 

  40. Do Nascimento GE, Hamm LA, Baggio CH et al (2013) Structure of a galactoarabinoglucuronoxylan from tamarillo (Solanum betaceum), a tropical exotic fruit, and its biological activity. Food Chem 141:510–516. https://doi.org/10.1016/j.foodchem.2013.03.023

    Article  CAS  PubMed  Google Scholar 

  41. Naveed M, Hejazi V, Abbas M et al (2018) Chlorogenic acid (CGA): a pharmacological review and call for further research. Biomed Pharmacother 97:67–74. https://doi.org/10.1016/j.biopha.2017.10.064

    Article  CAS  PubMed  Google Scholar 

  42. Liang N, Kitts DD (2015) Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients 8:1–20. https://doi.org/10.3390/nu8010016

    Article  CAS  Google Scholar 

  43. Mertz C, Gancel AL, Gunata Z et al (2009) Phenolic compounds, carotenoids and antioxidant activity of three tropical fruits. J Food Compos Anal 22:381–387. https://doi.org/10.1016/j.jfca.2008.06.008

    Article  CAS  Google Scholar 

  44. Ordóñez RM, Zampini IC, Rodríguez F et al (2011) Radical scavenging capacity and antimutagenic properties of purified proteins from Solanum betaceum fruits and Solanum tuberosum tubers. J Agric Food Chem 59:8655–8660. https://doi.org/10.1021/jf201760f

    Article  CAS  PubMed  Google Scholar 

  45. Cuesta L, Andrade Cuvi MJ, Moreno Guerrero C, Concellón A (2017) Content of antioxidant compounds in three ripening stages of tree tomato (Solanum betaceum Cav.) cultivated at different heights (m.s.n.m.). Enfoque UTE 4:32. https://doi.org/10.29019/enfoqueute.v4n1.23

    Article  CAS  Google Scholar 

  46. Ordóñez RM, Cardozo ML, Zampini IC, Isla MI (2010) Evaluation of antioxidant activity and genotoxicity of alcoholic and aqueous beverages and pomace derived from ripe fruits of Cyphomandra betacea Sendt. J Agric Food Chem 58:331–337. https://doi.org/10.1021/jf9024932

    Article  CAS  PubMed  Google Scholar 

  47. Seeram NP, Momin RA, Nair MG, Bourquin LD (2001) Cyclooxygenase inhibitory and antioxidant cyanidin glycosides in cherries and berries. Phytomedicine 8:362–369. https://doi.org/10.1078/0944-7113-00053

    Article  CAS  PubMed  Google Scholar 

  48. Mutalib MA, Ali F, Othman F et al (2016) Phenolics profile and anti-proliferative activity of Cyphomandra betacea fruit in breast and liver cancer cells. Springerplus 5(1):2105. https://doi.org/10.1186/s40064-016-3777-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kintzios SE (2006) Terrestrial plant-derived anticancer agents and plant species used in anticancer research. CRC Crit Rev Plant Sci 25:79–113. https://doi.org/10.1080/07352680500348824

    Article  CAS  Google Scholar 

  50. Kong JM, Chia LS, Goh NK et al (2003) Analysis and biological activities of anthocyanins. Phytochemistry 64:923–933. https://doi.org/10.1016/S0031-9422(03)00438-2

    Article  CAS  PubMed  Google Scholar 

  51. Badui Dergal S (2006) Food chemistry. Pearson Educación, México

    Google Scholar 

  52. Furtado RA, Oliveira BR, Silva LR et al (2015) Chemopreventive effects of rosmarinic acid on rat colon carcinogenesis. Eur J Cancer Prev 24:106–112. https://doi.org/10.1097/CEJ.0000000000000055

    Article  CAS  PubMed  Google Scholar 

  53. Venkatachalam K, Gunasekaran S, Namasivayam N (2016) Biochemical and molecular mechanisms underlying the chemopreventive efficacy of rosmarinic acid in a rat colon cancer. Eur J Pharmacol 791:37–50. https://doi.org/10.1016/j.ejphar.2016.07.051

    Article  CAS  PubMed  Google Scholar 

  54. Ordóñez RM, Ordóñez AAL, Sayago JE et al (2006) Antimicrobial activity of glycosidase inhibitory protein isolated from Cyphomandra betacea Sendt. fruit. Peptides 27:1187–1191. https://doi.org/10.1016/j.peptides.2005.11.016

    Article  CAS  PubMed  Google Scholar 

  55. Gannasin SP, Mustafa S, Adzahan NM, Muhammad K (2015) In vitro prebiotic activities of tamarillo (Solanum betaceum Cav.) hydrocolloids. J Funct Foods 19:10–19. https://doi.org/10.1016/j.jff.2015.09.004

    Article  CAS  Google Scholar 

  56. Brito E, Silva A, Falé PLV et al (2018) Serum albumin modulates the bioactivity of rosmarinic acid. J Med Food 21:801–807. https://doi.org/10.1089/jmf.2017.0086

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Bailon-Moscoso .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bailon-Moscoso, N., Ramírez-Orellana, M.I., Torres-Bailon, P., Romero-Benavides, J.C. (2020). Phytochemistry and Bioactivity of Solanum betaceum Cav. In: Murthy, H., Bapat, V. (eds) Bioactive Compounds in Underutilized Fruits and Nuts. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-06120-3_9-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06120-3_9-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06120-3

  • Online ISBN: 978-3-030-06120-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics