Skip to main content

Synthesis and Control of Silver Aggregates in Ion-Exchanged Silicate Glass by Thermal Annealing and Gamma Irradiation

  • Chapter
  • First Online:
Applications of Ion Exchange Materials in Chemical and Food Industries

Abstract

Samples of commercial silicate glass have been subjected to ion exchange by silver ions. The ion exchange was performed at 320 °C for periods from two minutes to one hour, in a molten mixture of AgNO3 and NaNO3 with a molar ratio of 1:99, 5:95 and 10:90. The ion exchange process was followed by different treatments: thermal annealing, gamma irradiation and their combined role in order to initiate the synthesis and control of silver aggregates in the surface of the glass matrix. UV-Visible absorption spectrometry results indicated that various states of silver existing in these glasses depend on heat treatment conditions. The silver ions (Ag+) exist in almost all conditions, neutral silver atoms (Ag0) exist only in samples subjected to heat treatment in the range of 250–450 °C, neutral silver aggregates (Ag0) produced by thermal annealing at 550 °C were responsible for the absorption bands observed from 305, 350 and 450 nm, respectively. The effect of gamma irradiation in doses from 10 to 100 kGy and thermal annealing on glass samples was also investigated. The main modification induced by gamma rays on the structure of silicate glass was the creation of colour centres, Non-Bridging Oxygen Hole Centres (NBOHCs) and trapped electrons. The (NBOHCs) defects caused the absorption of light. The Ag+ ions trapped electrons to form neutral silver Ag0. The first step of silver aggregation was observed, following the irradiation by gamma rays, as well as after thermal annealing. After annealing at 550 °C, silver atoms spread out over glass surface to form silver aggregates. An absorption band at 430 nm was observed characterizing the Surface Plasmon Resonance (SPR) of silver aggregates. The calculated average radius increases from 0.9 to 1.35 nm as the annealing time increased from 10 to 490 min. The average radius of nanoparticles varied as a function of absorbed dose. Unexpectedly, 10 kGy was found to be the optimally absorbed dose corresponding to the maximum of the nanoparticle’s average radius. The average radius of nanoparticles was decreased at a higher dose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seward TP (1980) J Non-Cryst Solids 40:499

    Article  CAS  Google Scholar 

  2. Rao KJ (2002) Structural chemistry of glasses. Elsevier Science, Amsterdam

    Google Scholar 

  3. Ageev LA, Miloslavskiĭ VK, Makovetskiĭ ED (2007) Opt Spectrosc 102:442

    Article  CAS  Google Scholar 

  4. Bandyopadhyay AK (2008) Nano materiels. New Age International, Kolkata, India

    Google Scholar 

  5. Schulman JH, Ginther RJ, Klick CC, Alger RS, Levy RA (1951) J Appl Phys 22:1479

    Article  CAS  Google Scholar 

  6. Bach H, Neuroth N (1998) The properties of optical glass. Springer, Berlin

    Book  Google Scholar 

  7. Doremus RH (1964) J Chem Phys 40:2389

    Article  Google Scholar 

  8. Doremus RH (1965) Physics 42:414

    CAS  Google Scholar 

  9. Manikandan D, Mohan S, Magudapathy P, Nair KGM (2003) Phys B 325:86

    Article  CAS  Google Scholar 

  10. Ahmed AA, Abd-Allah EW (1995) J Am Ceram Soc 78:2777

    Article  CAS  Google Scholar 

  11. Kowal TM et al (2000) Nucl Instr Meth B 166:490

    Article  Google Scholar 

  12. Hofmeister H, Thiel S, Dubiel M, Schurig E (1997) Appl Phys Lett 70:1694

    Article  CAS  Google Scholar 

  13. Espiau de Lamaestre R et al (2008) Phys Rev B 76:205431

    Article  Google Scholar 

  14. Zhang J (2008) J Cryst Growth 310:234

    Article  CAS  Google Scholar 

  15. Farah K et al (2002) Current topics in ionizing radiation research, In: ed. by M Nenoi (InTech Open Access Publisher, Croatia), p. 603

    Google Scholar 

  16. Farah K et al (2007) Fundamental and applied spectroscopy. In: Seddiki E, Telmini M (eds) Conference Proceedings, vol. 935. AIP, Melville, New York

    Google Scholar 

  17. Farah K et al (2006) Radiat Meas 41:201

    Article  CAS  Google Scholar 

  18. Yamane M, Asahara Y (2004) Glasses for photonics. Cambridge University Press, Cambridge, UK

    Google Scholar 

  19. Ito T (1961) Bull Chem Soc Jpn 35:1312

    Article  Google Scholar 

  20. Piquet JL, Shelby JE (1985) J Am Ceram Soc 68:450

    Article  Google Scholar 

  21. Bach H, Baucke FGK, Duffy JA (1986) Chem Glasses 27:215

    CAS  Google Scholar 

  22. Shelby JE, Vitko J Jr, Non-Cryst J (1982) Solids 50:107

    CAS  Google Scholar 

  23. Spierings GACM, Non-Cryst J (1987) Solids 94:407

    CAS  Google Scholar 

  24. Paje SE, García MA, Llopis J, Villegas MA, Non-Cryst J (2003) Solids 318:239

    CAS  Google Scholar 

  25. Paje SE, Llopis J, Villegas MA, Fernández Navarro JM (1996) Appl Phys A 63:431

    Article  CAS  Google Scholar 

  26. Villegas MA et al (2005) Mater Res Bull 40:1210

    Article  CAS  Google Scholar 

  27. Shelby JE (2005) Introduction to glass science and technology. The Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  28. Chopinet MH, Lizarazu D, Rocanière C (2002) C R Chim 5:939

    Article  CAS  Google Scholar 

  29. Kaganovskii Yu et al (2007) J Non-Cryst Solids 353:2263

    Article  CAS  Google Scholar 

  30. García MA et al (2011) J Phys D: Appl Phys 32:975

    Google Scholar 

  31. Ahmed AA et al (1992) In: Proceeding of 16th international congress on glass, vol 4, Madrid, Spain, p 503

    Google Scholar 

  32. Paje SE et al (1998) Appl Phys A 67:429

    Article  CAS  Google Scholar 

  33. Sarker S, Kumar J, Chakravorty D (1983) J Mater Sci 18:250

    Article  Google Scholar 

  34. Schreurs JWH (1967) J Chem Phys 47(2):818

    Article  CAS  Google Scholar 

  35. Battaglin G et al (1996) Nucl Instrum Methods B 116:527

    Article  CAS  Google Scholar 

  36. Griscom DL (1984) J Non-Cryst Solids 64:229

    Article  CAS  Google Scholar 

  37. Farah K et al (2014) Nucl Instr Meth B 323:36

    Article  CAS  Google Scholar 

  38. Bellouni J, Mostafavi M (1999) Metal clusters in chemistryIn: Braunstein P, Oro LA, Raithby PR (eds) (Wiley-VCH Verlag GmbH, Weinheim, Germany 1999), p 1213

    Google Scholar 

  39. Galeneer FL et al (1993) Phys Rev B 47:7760

    Article  Google Scholar 

  40. Farah K et al (2010) Nucl Instr Meth A 614:137

    Article  CAS  Google Scholar 

  41. Mennig M, Berg KJ (1991) Mater Sci Eng B9:421

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Farah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Farah, K., Hosni, F., Hamzaoui, A.H. (2019). Synthesis and Control of Silver Aggregates in Ion-Exchanged Silicate Glass by Thermal Annealing and Gamma Irradiation. In: Inamuddin, Rangreez, T., M. Asiri, A. (eds) Applications of Ion Exchange Materials in Chemical and Food Industries. Springer, Cham. https://doi.org/10.1007/978-3-030-06085-5_5

Download citation

Publish with us

Policies and ethics