Skip to main content

Light-Induced Processes in Porphyrin-Fullerene Systems

  • Chapter
  • First Online:
Progress in Photon Science

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 119))

Abstract

Porphyrin-fullerene dyads are representative class of donor-acceptor molecular systems capable of undergoing photoinduced charge separation, the phenomenon that is the key process in solar energy conversion systems either in organic solar cells or photoredox catalysis. The charge-separated state generated in covalently linked dyad is a highly polarized electronically excited state. Formation of this state typically proceeds as a result of the relaxation of a locally excited state of higher energy, which is populated upon the initial excitation of the dyad. The review of computational and spectroscopic studies of the excited states in porphyrin-fullerene covalently linked dyads is given in the present chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.N. Lim, C.O. Obondi, F. D’Souza, Angew. Chem. Int. Ed. 55, 11517 (2016)

    Article  Google Scholar 

  2. N. Martín, Chem. Commun. 2093 (2006)

    Google Scholar 

  3. F.D. Souza, O. Ito, Chem. Soc. Rev. 41, 86 (2012)

    Article  Google Scholar 

  4. S. Fukuzumi, K. Ohkubo, T. Suenobu, Acc. Chem. Res. 47, 1455 (2014)

    Article  Google Scholar 

  5. E.N. Durantini, A. Moore, T.A. Moore, D. Gust, Molecules 5, 529 (2000)

    Article  Google Scholar 

  6. M. Fujitsuka, K. Matsumoto, O. Ito, T. Yamashiro, Y. Aso, T. Otsubo, Res. Chem. Intermed. 27, 73 (2001)

    Article  Google Scholar 

  7. H. Imahori, T. Umeyama, K. Kurotobi, Y. Takano, Chem. Commun. 48, 4032 (2012)

    Article  Google Scholar 

  8. M. Vasilopoulou, D.G. Georgiadou, A.M. Douvas, A. Soultati, V. Constantoudis, D. Davazoglou, S. Gardelis, L.C. Palilis, M. Fakis, S. Kennou, T. Lazarides, A.G. Coutsolelos, P.J. Argitis, Mater. Chem. A 2, 182 (2014)

    Article  Google Scholar 

  9. T. Arai, S. Nobukuni, A.S.D. Sandanayaka, O. Ito, J. Phys. Chem. C 113, 14493 (2009)

    Article  Google Scholar 

  10. T. Umeyama, T. Takamatsu, N. Tezuka, Y. Matano, Y. Araki, T. Wada, O. Yoshikawa, T. Sagawa, S. Yoshikawa, H. Imahori, J. Phys. Chem. C 113, 10798 (2009)

    Article  Google Scholar 

  11. H. Imahori, Y. Mori, Y.J. Matano, Photochem. Photobiol. C Photochem. Rev. 4, 51 (2003)

    Article  Google Scholar 

  12. H. Imahori, Y. Sakata, Eur. J. Org. Chem. 2445 (1999)

    Article  Google Scholar 

  13. T. Ichiki, Y. Matsuo, E. Nakamura, Chem. Commun. 49, 279 (2013)

    Article  Google Scholar 

  14. Y. Tamura, H. Saeki, J. Hashizume, Y. Okazaki, D. Kuzuhara, M. Suzuki, N. Aratani, H. Yamada, Chem. Commun. 50, 10379 (2014)

    Article  Google Scholar 

  15. N. Kafle, A. Buldum, AIMS Mater. Sci. 4, 505 (2017)

    Article  Google Scholar 

  16. D.M. Guldi, Chem. Soc. Rev. 31, 22 (2002)

    Article  Google Scholar 

  17. H. Imahori, K. Tamaki, H. Yamada, K. Yamada, Carbon 38, 1599 (2000)

    Article  Google Scholar 

  18. H. Lemmetyinen, N. Tkachenko, A. Efimov, M.J. Niemi, Porphyr. Phthalocyanines 13, 1090 (2009)

    Article  Google Scholar 

  19. J. Sukegawa, C. Schubert, X. Zhu, H. Tsuji, D.M. Guldi, E. Nakamura, Nat. Chem. 6, 899 (2014)

    Article  Google Scholar 

  20. O. Ito, Chem. Rec. 17, 326 (2017)

    Article  Google Scholar 

  21. N.J. Agnihotri, Photochem. Photobiol. C Photochem. Rev. 18, 18 (2014)

    Article  Google Scholar 

  22. A.S. Konev, A.F. Khlebnikov, P.I. Prolubnikov, A.S. Mereshchenko, A.V. Povolotskiy, O.V. Levin, A. Hirsch, Chem. Eur. J. 21, 1237 (2015)

    Article  Google Scholar 

  23. M.E. Zandler, F. D’Souza, Comptes Rendus Chim. 9, 960 (2006)

    Article  Google Scholar 

  24. O. Cramariuc, T.I. Hukka, T.T. Rantala, H. Lemmetyinen, J. Phys. Chem. A 110, 12470 (2006)

    Article  Google Scholar 

  25. O. Cramariuc, T.I. Hukka, T.T. Rantala, H. Lemmetyinen, J. Comput. Chem. 30, 1194 (2009)

    Article  Google Scholar 

  26. P.O. Krasnov, Y.M. Milytina, N.S. Eliseeva, Internet Electron. J. Mol. Des. 9, 20 (2010)

    Google Scholar 

  27. T. Karilainen, O. Cramariuc, M. Kuisma, K. Tappura, T.I. Hukka, J. Comput. Chem. 36, 612 (2015)

    Article  Google Scholar 

  28. S. Grimme, J. Comput. Chem. 27, 1787 (2006)

    Article  Google Scholar 

  29. M. Elstner, P. Hobza, T. Frauenheim, S. Suhai, E. Kaxiras, J. Chem. Phys. 114, 5149 (2001)

    Article  ADS  Google Scholar 

  30. V. Vehmanen, N.V. Tkachenko, H. Imahori, S. Fukuzumi, H. Lemmetyinen, Spectrochim. Acta A 57, 2229 (2001)

    Article  ADS  Google Scholar 

  31. V. Chukharev, N.V. Tkachenko, A. Efimov, D.M. Guldi, A. Hirsch, M. Scheloske, H. Lemmetyinen, J. Phys. Chem. B 108, 16377 (2004)

    Article  Google Scholar 

  32. F. D’Souza, S. Gadde, M.E. Zandler, A. Klykov, M.E. El-Khouly, M. Fujitsuka, O. Ito, J. Phys. Chem. A 106, 12393 (2002)

    Article  Google Scholar 

  33. M.E. El-Khouly, Y. Araki, O. Ito, S. Gadde, A.L. McCarty, P.A. Karr, M.E. Zandler, F. D’Souza, Phys. Chem. Chem. Phys. 7, 3163 (2005)

    Article  Google Scholar 

  34. E. Krokos, C. Schubert, F. Spänig, M. Ruppert, A. Hirsch, D.M. Guldi, Chem. Asian J. 7, 1451 (2012)

    Article  Google Scholar 

  35. H. Imahori, N.V. Tkachenko, V. Vehmanen, K. Tamaki, H. Lemmetyinen, Y. Sakata, S. Fukuzumi, J. Phys. Chem. A 105, 1750 (2001)

    Article  Google Scholar 

  36. V. Chukharev, N.V. Tkachenko, A. Efimov, H. Lemmetyinen, Chem. Phys. Lett. 411, 501 (2005)

    Article  ADS  Google Scholar 

  37. A.H. Al-Subi, M. Niemi, J. Ranta, N.V. Tkachenko, H. Lemmetyinen, Chem. Phys. Lett. 531, 164 (2012)

    Article  ADS  Google Scholar 

  38. N.V. Tkachenko, H. Lemmetyinen, J. Sonoda, K. Ohkubo, T. Sato, H. Imahori, S. Fukuzumi, J. Phys. Chem. A 107, 8834 (2003)

    Article  Google Scholar 

  39. M.A. Fazio, A. Durandin, N.V. Tkachenko, M. Niemi, H. Lemmetyinen, D.I. Schuster, Chem. Eur. J. 15, 7698 (2009)

    Article  Google Scholar 

  40. I.D. Petsalakis, N. Tagmatarchis, G. Theodorakopoulos, J. Phys. Chem. C 111, 14139 (2007)

    Article  Google Scholar 

  41. M. Maggini, G. Scorrano, M. Prato, J. Am. Chem. Soc. 115, 9798 (1993)

    Article  Google Scholar 

  42. S. Vail, D.I. Schuster, D.M. Guldi, M. Isosomppi, N. Tkachenko, H. Lemmetyinen, A. Palkar, L. Echegoyen, X. Chen, J.Z.H. Zhang, J. Phys. Chem. B 110, 14155 (2006)

    Article  Google Scholar 

  43. D.M. Guldi, M. Prato, Acc. Chem. Res. 33, 695–703 (2000)

    Article  Google Scholar 

  44. H. Imahori, K. Hagiwara, M. Aoki, T. Akiyama, S. Taniguchi, T. Okada, M. Shirakawa, Y. Sakata, J. Am. Chem. Soc. 118, 11771 (1996)

    Article  Google Scholar 

  45. K.Y. Yeon, D. Jeong, S.K. Kim, Chem. Commun. 46, 5572 (2010)

    Article  Google Scholar 

  46. A. Lukaszewicz, J. Karolczak, D. Kowalska, A. Maciejewski, M. Ziolek, R.P. Steer, Chem. Phys. 331, 359 (2007)

    Article  Google Scholar 

  47. S.Y. Kim, T. Joo, J. Phys. Chem. Lett. 6, 2993 (2015)

    Article  Google Scholar 

  48. P.G. Seybold, M. Gouterman, J. Mol. Spectrosc. 31, 1 (1969)

    Article  ADS  Google Scholar 

  49. A.J. Harriman, Chem. Soc. Faraday Trans. 2(77), 1695 (1981)

    Article  Google Scholar 

  50. A.J. Harriman, Chem. Soc. Faraday Trans. 2(76), 1978 (1980)

    Article  Google Scholar 

  51. L. Pekkarinen, H. Linschitz, J. Am. Chem. Soc. 82, 2407 (1960)

    Article  Google Scholar 

  52. M. Gouterman, J. Mol. Spectrosc. 6, 138 (1961)

    Article  ADS  Google Scholar 

  53. D.M. Guldi, K.D. Asmus, J. Phys. Chem. A 101, 1472 (1997)

    Article  Google Scholar 

  54. F. D’Souza, M.E. Zandler, P.M. Smith, G.R. Deviprasad, A. Klykov, M. Fujitsuka, O. Ito, J. Phys. Chem. A 106, 649 (2002)

    Article  Google Scholar 

  55. D.M. Guldi, M. Maggini, G. Scorrano, M. Prato, J. Am. Chem. Soc. 119, 974 (1997)

    Article  Google Scholar 

  56. J.L. Anderson, Y.Z. An, Y. Rubin, C.S. Foote, J. Am. Chem. Soc. 116, 9763 (1994)

    Article  Google Scholar 

  57. M.A. Greaney, S.M. Gorun, J. Phys. Chem. 95, 7142 (1991)

    Article  Google Scholar 

  58. J. Fajer, D.C. Borg, A. Forman, D. Dolphin, R.H. Felton, J. Am. Chem. Soc. 92, 3451 (1970)

    Article  Google Scholar 

  59. P. Neta, A. Harriman, J. Chem. Soc. Farad. Trans. 81(2), 123 (1985)

    Google Scholar 

  60. J.H. Fuhrhop, D. Mauzerall, J. Am. Chem. Soc. 91, 4174 (1969)

    Article  Google Scholar 

  61. D.I. Schuster, Carbon 38, 1607 (2000)

    Article  Google Scholar 

  62. D.I. Schuster, P. Cheng, P.D. Jarowski, D.M. Guldi, C. Luo, L. Echegoyen, S. Pyo, A.R. Holzwarth, S.E. Braslavsky, R.M. Williams, G. Klihm, J. Am. Chem. Soc. 126, 7257 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The STEPS program funded by JSPS Inter-University Exchange Program and St. Petersburg State University—JTI joint program (Grant No. 12.54.1266.2016) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander S. Konev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Konev, A.S. (2019). Light-Induced Processes in Porphyrin-Fullerene Systems. In: Yamanouchi, K., Tunik, S., Makarov, V. (eds) Progress in Photon Science. Springer Series in Chemical Physics, vol 119. Springer, Cham. https://doi.org/10.1007/978-3-030-05974-3_22

Download citation

Publish with us

Policies and ethics