Skip to main content

Fracture Toughness and Fatigue Strength of Selective Laser Melted Aluminium–Silicon: An Overview

  • Conference paper
  • First Online:
TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 4986 Accesses

Abstract

Metals fabricated in a powder-bed environment can achieve outstanding mechanical properties . Aluminium -silicon (AlSi) alloys can exhibit an anisotropic behaviour and exhibit inhomogeneities and predetermined sites of fracture in their as-fabricated state. The work at hand provides an overview of the fracture toughness and the fatigue performance of selective laser melted AlSi, including surface treatments and the impact of the irradiation paradigm. In addition, the results of conventional post-heat treatments on selective laser melted material as well as their limitations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hitzler L, Merkel M, Hall W, Öchsner A (2018) A review of metal fabricated with laser- and powder-bed based additive manufacturing techniques: process, nomenclature, materials, achievable properties, and its utilization in the medical sector. Adv Eng Mater 20:1700658. https://doi.org/10.1002/adem.201700658

    Article  CAS  Google Scholar 

  2. Hitzler L, Hirsch J, Heine B, Merkel M, Hall W, Öchsner A (2017) On the anisotropic mechanical properties of selective laser melted stainless steel. Materials 10:1136. https://doi.org/10.3390/ma10101136

    Article  CAS  Google Scholar 

  3. Prashanth KG, Scudino S, Klauss HJ, Surreddi KB, Löber L, Wang Z, Chaubey AK, Kühn U, Eckert J (2014) Microstructure and mechanical properties of Al–12Si produced by selective laser melting: effect of heat treatment. Mater Sci Eng A 590:153–160. https://doi.org/10.1016/j.msea.2013.10.023

    Article  CAS  Google Scholar 

  4. Aboulkhair NT, Tuck C, Ashcroft I, Maskery I, Everitt NM (2015) On the precipitation hardening of selective laser melted AlSi10Mg. Metall Mater Trans A 46:3337–3341. https://doi.org/10.1007/s11661-015-2980-7

    Article  CAS  Google Scholar 

  5. Tang M, Pistorius PC (2017) Anisotropic mechanical behavior of AlSi10Mg parts produced by selective laser melting. JOM 69:516–522. https://doi.org/10.1007/s11837-016-2230-5

    Article  CAS  Google Scholar 

  6. Aboulkhair NT, Maskery I, Tuck C, Ashcroft I, Everitt NM (2016) Improving the fatigue behaviour of a selectively laser melted aluminium alloy: Influence of heat treatment and surface quality. Mater Des 104:174–182. https://doi.org/10.1016/j.matdes.2016.05.041

    Article  CAS  Google Scholar 

  7. Takata N, Kodaira H, Sekizawa K, Suzuki A, Kobashi M (2017) Change in microstructure of selectively laser melted AlSi10Mg alloy with heat treatments. Mater Sci Eng A 704:218–228. https://doi.org/10.1016/j.msea.2017.08.029

    Article  CAS  Google Scholar 

  8. Tang M (2017) Inclusions, porosity, and fatigue of AlSi10Mg parts produced by selective laser melting. Ph.D. thesis, Carnegie Mellon University

    Google Scholar 

  9. Ding Y, Muñiz-Lerma JA, Trask M, Chou S, Walker A, Brochu M (2016) Microstructure and mechanical property considerations in additive manufacturing of aluminum alloys. MRS Bull 41:745–751. https://doi.org/10.1557/mrs.2016.214

    Article  CAS  Google Scholar 

  10. Hitzler L, Janousch C, Schanz J, Merkel M, Heine B, Mack F, Hall W, Öchsner A (2017) Direction and location dependency of selective laser melted AlSi10Mg specimens. J Mater Process Tech 243:48–61. https://doi.org/10.1016/j.jmatprotec.2016.11.029

    Article  CAS  Google Scholar 

  11. Hitzler L, Schoch N, Heine B, Merkel M, Hall W, Öchsner A (2018) Compressive behaviour of additively manufactured AlSi10Mg. Mat -wiss u Werkstofftech 49:683–688. https://doi.org/10.1002/mawe.201700239

    Article  CAS  Google Scholar 

  12. Aboulkhair NT (2016) Additive manufacture of an aluminium alloy: processing, microstructure, and mechanical properties. Ph.D. thesis, University of Nottingham

    Google Scholar 

  13. Hitzler L, Hirsch J, Schanz J, Heine B, Merkel M, Hall W, Öchsner A (2017) Fracture toughness of selective laser melted AlSi10Mg. P I Mech Eng L J Mat. https://doi.org/10.1177/1464420716687337 (Online first)

  14. Riemer A, Leuders S, Thöne M, Richard HA, Tröster T, Niendorf T (2014) On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting. Eng Fract Mech 120:15–25. https://doi.org/10.1016/j.engfracmech.2014.03.008

    Article  Google Scholar 

  15. Tang M, Pistorius PC (2017) Oxides, porosity and fatigue performance of AlSi10Mg parts produced by selective laser melting. Int J Fatigue 94:192–201. https://doi.org/10.1016/j.ijfatigue.2016.06.002

    Article  CAS  Google Scholar 

  16. Hitzler L, Janousch C, Schanz J, Merkel M, Mack F, Öchsner A (2016) Non-destructive evaluation of AlSi10Mg prismatic samples generated by selective laser melting: influence of manufacturing conditions. Mat -wiss u Werkstofftech 47:564–581. https://doi.org/10.1002/mawe.201600532

    Article  CAS  Google Scholar 

  17. Yang KV, Rometsch P, Jarvis T, Rao J, Cao S, Davies C, Wu X (2018) Porosity formation mechanisms and fatigue response in Al-Si-Mg alloys made by selective laser melting. Mater Sci Eng A 712:166–174. https://doi.org/10.1016/j.msea.2017.11.078

    Article  CAS  Google Scholar 

  18. Beevers E, Brandão AD, Gumpinger J, Gschweitl M, Seyfert C, Hofbauer P, Rohr T, Ghidini T (2018) Fatigue properties and material characteristics of additively manufactured AlSi10Mg—effect of the contour parameter on the microstructure, density, residual stress, roughness and mechanical properties. Int J Fatigue 117:148–162. https://doi.org/10.1016/j.ijfatigue.2018.08.023

    Article  CAS  Google Scholar 

  19. Uzan NE, Ramati S, Shneck R, Frage N, Yeheskel O (2018) On the effect of shot-peening on fatigue resistance of AlSi10Mg specimens fabricated by additive manufacturing using selective laser melting (AM-SLM). Addit Manuf 21:458–464. https://doi.org/10.1016/j.addma.2018.03.030

    Article  CAS  Google Scholar 

  20. Schanz J, Hofele M, Ruck S, Schubert T, Hitzler L, Schneider G, Merkel M, Riegel H (2017) Metallurgical investigations of laser remelted additively manufactured AlSi10Mg parts. Mat -wiss u Werkstofftech 48:463–476. https://doi.org/10.1002/mawe.201700039

    Article  CAS  Google Scholar 

  21. Buchbinder D, Meiners W, Brandl E, Palm F, Müller-Lohmeier K, Wolter M, Over C, Moll W, Weber J, Skrynecki N, Grad J, Neubert V (2010) Abschlussbericht - Generative Fertigung von Aluminiumbauteilen für die Serienproduktion, 01RIO639A-D, BMBF, Fraunhofer ILT

    Google Scholar 

  22. Brandl E, Heckenberger U, Holzinger V, Buchbinder D (2012) Additive manufactured AlSi10Mg samples using selective laser melting (SLM): microstructure, high cycle fatigue, and fracture behavior. Mater Des 34:159–169. https://doi.org/10.1016/j.matdes.2011.07.067

    Article  CAS  Google Scholar 

  23. Maskery I, Aboulkhair NT, Tuck C, Wildman RD, Ashcroft IA, Everitt NM, Hague RJM (2015) Fatigue performance enhancement of selectively laser melted aluminium alloy by heat treatment. Paper presented at SFF symposium, Austin, Texas, USA

    Google Scholar 

  24. Hafenstein S, Brummer M, Ahlfors M, Werner E (2016) Combined hot isostatic pressing and heat treatment of aluminum A356 cast alloys. HTM J Heat Treat Mater 71:117–124. https://doi.org/10.3139/105.110281

    Article  Google Scholar 

  25. Hafenstein S, Brummer M, Ahlfors M, Werner E (2016) Kombiniertes Heißisostatisches Pressen (HIP) und Wärmebehandlung von einer A356 Aluminiumgusslegierung. Druckguss 7–8:316–321

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonhard Hitzler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hitzler, L., Sert, E., Merkel, M., Öchsner, A., Werner, E. (2019). Fracture Toughness and Fatigue Strength of Selective Laser Melted Aluminium–Silicon: An Overview. In: TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-05861-6_37

Download citation

Publish with us

Policies and ethics