Skip to main content

A Review of Wind Energy Resource Assessment in the Urban Environment

  • Chapter
  • First Online:
Advances in Sustainable Energy

Part of the book series: Lecture Notes in Energy ((LNEN,volume 70))

Abstract

This chapter provides a synopsis of an emerging consensus on methodologies for conducting assessments of wind flow resources in the urban environment. Such evaluations of the urban turbulent flow are becoming more common, as the value of such information is realized for assessing building planning, ventilation and exhaust design, urban wind energy harvesting, placement of solar modules, and comfort of pedestrians around these structures. This chapter places emphasis on wind resource assessment for the use of wind energy harvesting, and it notes the growing body of research pointing to accepted methods for combining experimental data collection with CFD modelling to optimize the placement of small wind turbines (SWT). The experimental research points to a changing view on the accepted 10 min averaging times used for calculating turbulence statistics. Specifically, recent results revealed significant effects of shorter averaging time on the turbulence intensity, which may be relevant for SWT. CFD models tend to use RANS closures with modified and nonlinear models. These aim to accurately predict the mean effect of unsteady recirculation around rooftops, where wind harvesting devices are likely to be installed. This review documents the multitude of approaches, showing the current trends toward standardized method of wind resource assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abohela I, Hamza N, Dudek S (2013) Effect of roof shape, wind direction, building height and urban configuration on the energy yield and positioning of roof mounted wind turbines. Renew Energy 50:1106–1118

    Article  Google Scholar 

  • Albers A, Jakobi T, Rohden R, Stoltenjohannes J (2007) Influence of meteorological variables on measured wind turbine power curves. In: The European wind energy conference & exhibition, pp 525–546

    Google Scholar 

  • Archer CL, Jacobson MZ (2005) Evaluation of global wind power. J Geophys Res: Atmos 110(D12):D12110

    Article  Google Scholar 

  • Ayhan D, Salam S (2012) A technical review of building-mounted wind power systems and a sample simulation model. Renew Sustain Energy Rev 16(1):1040–1049

    Article  Google Scholar 

  • Bai G, Fleck B, Zuo MJ (2016) A stochastic power curve for wind turbines with reduced variability using conditional copula. Wind Energy 19:1519–1534

    Google Scholar 

  • Baskaran A, Stathopoulos T (1989) Computational evaluation of wind effects on buildings. Build Environ 24(4):325–333

    Article  Google Scholar 

  • Bavuudorj O, Sang-Kwon L, Seungbae L (2012) A method of micrositing of wind turbine on building roof-top by using joint distribution of wind speed and direction, and computational fluid dynamics. J Mech Sci Technol 26(12):3981–3988

    Article  Google Scholar 

  • Bechmann A, Sørensen NN (2010) Hybrid RANS/LES method for wind flow over complex terrain. Wind Energy 13(1):36–50

    Article  Google Scholar 

  • Blocken B (2015) Computational fluid dynamics for urban physics: importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations. Build Environ 91:219–245. Fifty year anniversary for building and environment

    Google Scholar 

  • Blocken B (2014) 50 years of computational wind engineering: past, present and future. J Wind Eng Ind Aerodyn 129:69–102

    Article  Google Scholar 

  • Blocken B, Persoon J (2009) Pedestrian wind comfort around a large football stadium in an urban environment: CFD simulation, validation and application of the new dutch wind nuisance standard. J Wind Eng Ind Aerodyn 97(5):255–270

    Article  Google Scholar 

  • Blocken B, Stathopoulos T, Carmeliet J (2007) CFD simulation of the atmospheric boundary layer: wall function problems. Atmos Environ 41:238–252

    Article  Google Scholar 

  • Blocken B, Janssen WD, van Hooff T (2012) CFD simulation for pedestrian wind comfort and wind safety in urban areas: general decision framework and case study for the eindhoven university campus. Environ Model Softw 30:15–34

    Article  Google Scholar 

  • Britter RE, Hanna SR (2003) Flow and dispersion in urban areas. Annu Rev Fluid Mech 35(1):469–496

    Article  Google Scholar 

  • Cace J, ter Horst RE, Syngellakis HK, Power IT (2007) Urban wind turbines. Guidelines for small wind turbines in the built environment, 1–41. www.urban-wind.org

  • Crespo A, Manuel F, Moreno D, Fraga E, Hernandez J (1985) Numerical analysis of wind turbine wakes. In: Bergeles G, Chadjivassiliadis J (eds) Proceedings Delphi workshop on wind energy—applications European wind energy association, pp 15–25

    Google Scholar 

  • Dehai J, Weimei J, Hongnian L, Jianning S (2008) Systematic influence of different building spacing, height and layout on mean wind and turbulent characteristics within and over urban building arrays. Wind Struct 11(4):275–289

    Article  Google Scholar 

  • Durbin PA, Reif BP (2011) Statistical theory and modeling for turbulent flows. Wiley

    Google Scholar 

  • Durbin PA (1996) On the \(k-\varepsilon \) stagnation point anomaly. Int J Heat Fluid Flow 17(1):89–90

    Article  Google Scholar 

  • Dutton AG, Halliday JA, Blanch MJ (2005) The feasibility of building-mounted/integrated wind turbines (BUWTs): achieving their potential for carbon emission reductions. Energy Research Unit, CCLRC, pp 77–83

    Google Scholar 

  • Dvorak P (2014) Why not more vertical-axis wind turbines? http://www.windpowerengineering.com/design/vertical-axis-wind-turbines/. Accessed 25 Jan 2017

  • Eliasson I, Offerle B, Grimmond CSB, Lindqvist S (2006) Wind fields and turbulence statistics in an urban street canyon. Atmos Environ 40(1):1–16

    Article  Google Scholar 

  • Elliott D, Infield D (2014) An assessment of the impact of reduced averaging time on small wind turbine power curves, energy capture predictions and turbulence intensity measurements. Wind Energy 17(2):337–342

    Article  Google Scholar 

  • Emeis S (2012) Wind energy meteorology: atmospheric physics for wind power generation

    Google Scholar 

  • Eriksson S, Bernhoff H, Leijon M (2008) Evaluation of different turbine concepts for wind power. Renew Sustain Energy Rev 12(5):1419–1434

    Article  Google Scholar 

  • ExxonMobil (2016) The outlook for energy: a view to 2040. http://cdn.exxonmobil.com/~/media/global/files/outlook-for-energy/2016/2016-outlook-for-energy.pdf. Accessed 21 Dec 2016

  • Fields J, Oteri F, Preus R, Baring-Gould I (2016) Deployment of wind turbines in the built environment: risks, lessons, and recommended practices. Technical report, NREL (National Renewable Energy Laboratory (NREL), Golden, CO, USA

    Google Scholar 

  • Fleck B, Huot M (2009) Comparative life-cycle assessment of a small wind turbine for residential off-grid use. Renew Energy 34(12):2688–2696

    Article  Google Scholar 

  • Fogaing MBT, Yalchin J, Shadpey S, Lange CF, Fleck BA (2018) Numerical assessment of rooftop wind regime around buildings in a complex urban environment. In: Proceedings of the 26th annual conference of the CFD Society of Canada, Winnipeg, Canada

    Google Scholar 

  • Franke J (2007) Best practice guideline for the CFD simulation of flows in the urban environment

    Google Scholar 

  • Franke J, Hellsten A, Schlunzen KH, Carissimo B (2011) The cost 732 best practice guideline for CFD simulation of flows in the urban environment: a summary. Int J Environ Pollut 44(1–4):419–427

    Article  Google Scholar 

  • Gagliano A, Nocera F, Patania F, Capizzi A (2013) Assessment of micro-wind turbines performance in the urban environments: an aided methodology through geographical information systems. Int J Energy Environ Eng 4(1):43

    Article  Google Scholar 

  • Giometto MG, Christen A, Egli PE, Schmid MF, Tooke RT, Coops NC, Parlange MB (2017) Effects of trees on mean wind, turbulence and momentum exchange within and above a real urban environment. Adv Water Resour 106:154–168. Tribute to Professor Garrison Sposito: an exceptional hydrologist and geochemist

    Google Scholar 

  • Grieser B, Madlener R, Sunak Y (2013) Economics of small wind power plants in urban settings: an empirical investigation for Germany. Institute for Future Energy Consumer Needs and Behavior (FCN) (1), January 2013

    Google Scholar 

  • Heath M, Walshe A, Watson JD, Simon J (2007) Estimating the potential yield of small building-mounted wind turbines. Wind Energy 10(3):271–287

    Article  Google Scholar 

  • IEA Wind (2011a) https://www.ieawind.org/task_27_home_page.html. Accessed 4 May 2017

  • IEA Wind (2011b) Recommended practices for wind turbine testing and evaluation. https://www.ieawind.org/task_27/PDF/Task%2027%20publication%20Consumer_label_RP%2012%20approved.pdf. Accessed 4 May 2017

  • IEC 61400-1 Third Edition (2005). Wind turbine—part 1: design requirement. In: International electrotechnical commission, Geneva, Switzerland

    Google Scholar 

  • IEC 61400-2 (2011) Wind turbines part 2: design requirements for small wind turbines-Annex M. In: International electrotechnical commission, Geneva, Switzerland

    Google Scholar 

  • International Electrotechnical Commission (IEC) (2005) Wind turbines part 121: power performance measurements of electricity producing wind turbines, ed. 1.0. In: International Standard, IEC 61400-12-1, Geneva, Switzerland, December 2005

    Google Scholar 

  • Ishikawa H, Amano S, Yakushiji K (2006) Flow around a living tree. JSME Int J Ser B Fluids Therm Eng 49(4):1064–1069

    Article  Google Scholar 

  • Islam MR, Mekhilef S, Saidur R (2013) Progress and recent trends of wind energy technology. Renew Sustain Energy Rev 21:456–468

    Article  Google Scholar 

  • Jian-Zhong L, Hui-Jun L, Kai Z (2007) New expressions for the surface roughness length and displacement height in the atmospheric boundary layer. Chin Phys 16(7):2033

    Article  Google Scholar 

  • Jones WP, Launder BE (1972) The prediction of laminarization with a two-equation model of turbulence. Int J Heat Mass Transf 15(2):301–314

    Article  Google Scholar 

  • Kalmikov A, Dupont G, Dykes K, Chan C (2010) Wind power resource assessment in complex urban environments: MIT campus case-study using CFD analysis. In: AWEA, windpower conference, Dallas, USA, p 2010

    Google Scholar 

  • Kanda M, Moriwaki R, Kasamatsu F (2004) Large-eddy simulation of turbulent organized structures within and above explicitly resolved cube arrays. Bound-Layer Meteorol 112(2):343–368

    Article  Google Scholar 

  • Karthikeya BR, Negi PS, Srikanth N (2016) Wind resource assessment for urban renewable energy application in Singapore. Renew Energy 87:403–414

    Article  Google Scholar 

  • Kazmirowicz D, Bridges J, Whale J, Wood D (in press) Assessing wind loads for urban photovoltaic installations. In: Ting D, Carriveau R (eds) Wind and solar based energy systems for communities. IET

    Google Scholar 

  • Krishnan A, Paraschivoiu M (2016) 3D analysis of building mounted VAWT with diffuser shaped shroud. Sustain Cities Soc 27:160–166

    Article  Google Scholar 

  • Launder BE, Kato M (1993) Modelling flow-induced oscillations in turbulent flow around a square cylinder. ASME-Publications-FED 157:189–199

    Google Scholar 

  • Ledo L, Kosasih PB, Cooper P (2011) Roof mounting site analysis for micro-wind turbines. Renew Energy 36(5):1379–1391

    Article  Google Scholar 

  • Lu L, Ip KY (2009) Investigation on the feasibility and enhancement methods of wind power utilization in high-rise buildings of Hong Kong. Renew Sustain Energy Rev 13(2):450–461

    Article  Google Scholar 

  • Lu X, McElroy MB, Kiviluoma J (2009) Global potential for wind-generated electricity. Proc Natl Acad Sci 106(27):10933–10938

    Article  Google Scholar 

  • Lubitz DW (2014) Impact of ambient turbulence on performance of a small wind turbine. Renew Energy 61:69–73

    Article  Google Scholar 

  • Macdonald RW (2000) Modelling the mean velocity profile in the urban canopy layer. Bound-Layer Meteorol 97(1):25–45

    Article  MathSciNet  Google Scholar 

  • Macdonald RW, Griffiths RF, Hall DJ (1998) An improved method for the estimation of surface roughness of obstacle arrays. Atmos Environ 32(11):1857–1864

    Article  Google Scholar 

  • Makkawi A, Celik AN, Muneer T (2009) Evaluation of micro-wind turbine aerodynamics, wind speed sampling interval and its spatial variation. Build Serv Eng Res Technol 30(1):7–14

    Article  Google Scholar 

  • Marvel K, Kravitz B, Caldeira K (2013) Geophysical limits to global wind power. Nat Clim Chang 3:118–121

    Article  Google Scholar 

  • Mathew S (2006) Wind energy: fundamentals, resource analysis and economics. Springer, Berlin Heidelberg

    Book  Google Scholar 

  • Meng T, Hibi K (1999) Turbulent measurements of the flow around a high-rise building. J Wind Eng 55–64

    Google Scholar 

  • Menter FR, Egorov Y (2010) The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: theory and model description. Flow, Turbul Combust 85(1):113–138

    Google Scholar 

  • Menter FR, Kuntz M (2004) Development and application of a zonal DES turbulence model for CFX-5. ANSYS CFX Validation Report

    Google Scholar 

  • Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32:1598–1605

    Google Scholar 

  • Mertens S (2006) Wind energy in the built environment: concentrator effects of buildings. Multiscience Publishing

    Google Scholar 

  • Mohamed MA, Wood DH (2015) Computational study of the effect of trees on wind flow over a building. Renew Wind Water Solar 2(1):2

    Google Scholar 

  • Mohamed MA, Wood DH (2016) Computational modeling of wind flow over the university of calgary campus. Wind Eng 40(3):228–249

    Article  Google Scholar 

  • Mohamed MA, Wood DH (2017) Modifications to reynolds-averaged navier-stokes turbulence models for the wind flow over buildings. Int J Sustain Energy 36(3):225–241

    Article  Google Scholar 

  • Murakami S (1993) Comparison of various turbulence models applied to a bluff body. J Wind Eng Ind Aerodyn 46 and 47:21–36. Proceedings of the 1st international on computational wind engineering

    Google Scholar 

  • Murakami S (1998) Overview of turbulence models applied in CWE-1997. J Wind Eng Ind Aerodyn 74–76:1–24

    Article  Google Scholar 

  • Natural Resources Canada (2003) Stand-alone wind energy systems: a buyer’s guide. https://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/canmetenergy/files/pubs/WindEnergy_buyersguide_ENG.pdf. Accessed 10 Nov 2016

  • Nelson MA, Pardyjak ER, Klewicki JC, Pol SU, Brown MJ (2007) Properties of the wind field within the Oklahoma city park avenue street canyon. Part I: mean flow and turbulence statistics. J Appl Meteorol Climatol 46(12):2038–2054

    Google Scholar 

  • Oke TR (1987) Boundary layer climates, 2nd edn. Routledge, Cambridge

    Google Scholar 

  • Pagnini LC, Burlando M, Pia RM (2015) Experimental power curve of small-size wind turbines in turbulent urban environment. Appl Energy 154:112–121

    Article  Google Scholar 

  • Paraschivoiu I (2002) Wind turbine design: with emphasis on Darrieus concept. Presses inter Polytechnique

    Google Scholar 

  • Plate EJ (1995) Urban climates and urban climate modelling: an introduction. Springer Netherlands, Dordrecht, pp 23–39

    Google Scholar 

  • Ricci A, Kalkman I, Blocken B, Burlando M, Freda A, Repetto MP (2017) Local-scale forcing effects on wind flows in an urban environment: impact of geometrical simplifications. J Wind Eng Ind Aerodyn 170:238–255

    Article  Google Scholar 

  • Ricci A, Kalkman IM, Blocken B, Burlando M, Freda A, Repetto MP (2016) Inflow condition sensitivity in the CFD simulation of wind flow in the urban environment. In: 8th international colloquium on bluff body aerodynamics and applications (BBAA VIII), 7–11 June 2016, Boston, USA, pp 1–10

    Google Scholar 

  • Richards PJ, Hoxey RP (1993) Appropriate boundary conditions for computational wind engineering models using the \(k\)-\(\varepsilon \) turbulence model. J Wind Eng Ind Aerodyn 46:145–153

    Article  Google Scholar 

  • Romanic D, Rasouli A, Hangan H (2015) Wind resource assessment in complex urban environment. Wind Eng 39(2):193–212

    Article  Google Scholar 

  • Rotach MW (1993a) Turbulence close to a rough urban surface part I: Reynolds stress. Bound-Layer Meteorol 65(1):1–28

    Google Scholar 

  • Rotach MW (1993b) Turbulence close to a rough urban surface part II: Variances and gradients. Bound-Layer Meteorol 66(1):75–92

    Google Scholar 

  • Roth M (2000) Review of atmospheric turbulence over cities. Q J R Meteorol Soc 126(564):941–990

    Article  Google Scholar 

  • Sadhu DP (1980) Personal communication. PROMEC, UFRGS, Brazil

    Google Scholar 

  • Saidur R, Islam MR, Rahim NA, Solangi KH (2010) A review on global wind energy policy. Renew Sustain Energy Rev 14(7):1744–1762

    Article  Google Scholar 

  • Shao J, Liu J, Zhao J (2012) Evaluation of various non-linear \(k-\epsilon \) models for predicting wind flow around an isolated high-rise building within the surface boundary layer. Build Environ 57:145–155

    Google Scholar 

  • Shih TH, Zhu J, Lumley JL (1993) A realizable reynolds stress algebraic equation model. NASA Technical Memorandum, National Aeronautics and Space Administration

    Google Scholar 

  • Shih TH, Liou WW, Shabbir A, Yang Z, Zhu J (1995) A new \(k-\varepsilon \) Eddy viscosity model for high reynolds number turbulent flows. Comput Fluids 24(3):227–238

    Article  Google Scholar 

  • Shirzadi M, Naghashzadegan M, Mirzaei PA (2018) Improving the CFD modelling of cross-ventilation in highly-packed urban areas. Sustain Cities Soc 37:451–465

    Article  Google Scholar 

  • Simões T, Estanqueiro A (2016) A new methodology for urban wind resource assessment. Renew Energy 89:598–605

    Article  Google Scholar 

  • Tabrizi AB, Whale J, Lyons T, Urmee T (2015) Rooftop wind monitoring campaigns for small wind turbine applications: effect of sampling rate and averaging period. Renew Energy 77:320–330

    Article  Google Scholar 

  • Tabrizi AB, Whale J, Lyons T, Urmee T (2015) Extent to which international wind turbine design standard, IEC61400-2 is valid for a rooftop wind installation. J Wind Eng Ind Aerodyn 139:50–61

    Article  Google Scholar 

  • Toja-Silva F, Lopez-Garcia O, Peralta C, Navarro J, Cruz I (2016) An empirical-heuristic optimization of the building-roof geometry for urban wind energy exploitation on high-rise buildings. Appl Energy 164:769–794

    Article  Google Scholar 

  • Toja-Silva T, Peralta C Lopez-Garcia O, Navarro J, Cruz I (2015) Roof region dependent wind potential assessment with different RANS turbulence models. J Wind Eng Ind Aerodyn 142:258–271

    Google Scholar 

  • Tominaga Y, Mochida A (1999) CFD prediction of flowfield and snowdrift around a building complex in a snowy region. J Wind Eng Ind Aerodyn 81(1–3):273–282

    Article  Google Scholar 

  • Tominaga Y, Mochida A, Murakami S, Sawaki S (2008) Comparison of various revised \(k-\varepsilon \) models and LES applied to flow around a high-rise building model with 1:1:2 shape placed within the surface boundary layer. J Wind Eng Ind Aerodyn 96(4):389–411

    Google Scholar 

  • Tominaga Y, Mochida A, Yoshie R, Kataoka H, Nozu T, Yoshikawa M, Shirasawa T (2008) AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. J Wind Eng Ind Aerodyn 96(10–11):1749–1761. 4th international symposium on computational wind engineering (CWE 2006)

    Google Scholar 

  • Toparlar Y, Blocken B, Maiheu B, van Heijst GJF (2017) A review on the CFD analysis of urban microclimate. Renew Sustain Energy Rev 80:1613–1640

    Article  Google Scholar 

  • Toparlar Y, Blocken B, Vos P, van Heijst GJF, Janssen WD, van Hooff T, Montazeri H, Timmermans HJP (2015) CFD simulation and validation of urban microclimate: a case study for Bergpolder Zuid, Rotterdam. Build Environ 83:79–90. Special issue: climate adaptation in cities

    Google Scholar 

  • Tsuchiya M, Murakami S, Mochida A, Kondo K, and Ishida Y (1997) Development of a new \(k-\varepsilon \) model for flow and pressure fields around bluff body. J Wind Eng Ind Aerodyn, 67 and 68:169–182. Computational wind engineering

    Google Scholar 

  • Tummala A, Velamati RK, Sinha DK, Indraja V, Krishna VH (2016) A review on small scale wind turbines. Renew Sustain Energy Rev 56:1351–1371

    Article  Google Scholar 

  • UNFCCC. Conference of the Parties (COP) (2015) Adoption of the Paris agreement. Proposal by the President. In: Paris climate change conference, COP 21, November–December 2015, vol 21932, p 32

    Google Scholar 

  • Van der Hoven I (1957) Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour. J Meteorol 14(2):160–164

    Google Scholar 

  • van Hooff T, Blocken B (2010) Coupled urban wind flow and indoor natural ventilation modelling on a high-resolution grid: a case study for the amsterdam arena stadium. Environ Model Softw 25(1):51–65

    Article  Google Scholar 

  • van Hooff T, Blocken B (2010) On the effect of wind direction and urban surroundings on natural ventilation of a large semi-enclosed stadium. Comput Fluids 39(7):1146–1155

    Article  Google Scholar 

  • van Hooff T, Blocken B, Tominaga Y (2017) On the accuracy of cfd simulations of cross-ventilation flows for a generic isolated building: comparison of rans, les and experiments. Build Environ 114:148–165

    Article  Google Scholar 

  • Van Bussel GJW, Mertens SM (2005) Small wind turbines for the built environment. In: The fourth European & African conference on wind engineering, vol 210

    Google Scholar 

  • Walker SL (2011) Building mounted wind turbines and their suitability for the urban scale-a review of methods of estimating urban wind resource. Energy Build 43(8):1852–1862

    Article  Google Scholar 

  • Wang Q, Wang J, Hou Y, Yuan R, Luo K, Fan J (2018) Micrositing of roof mounting wind turbine in urban environment: CFD simulations and lidar measurements. Renew Energy 115:1118–1133

    Article  Google Scholar 

  • White LV, Wakes SJ (2014) Permitting best use of wind resource for small wind-turbines in rural new zealand: a micro-scale CFD examination. Energy Sustain Dev 21:1–6

    Article  Google Scholar 

  • Wieringa J (1992) Updating the davenport roughness classification. J Wind Eng Ind Aerodyn 41(1–3):357–368

    Article  Google Scholar 

  • Wise DJ, Boppana VBL, Li KW, Poh HJ (2018) Effects of minor changes in the mean inlet wind direction on urban flow simulations. Sustain Cities Soc 37:492–500

    Article  Google Scholar 

  • Wood D (2011) Small wind turbines: analysis, design, and application. Green energy and technology. Springer, London

    Book  Google Scholar 

  • Wright NG, Easom GJ (2003) Non-linear \(k-\varepsilon \) turbulence model results for flow over a building at full-scale. Appl Math Model 27(12):1013–1033

    Article  Google Scholar 

  • Xie ZT, Coceal O, Castro IP (2008) Large-eddy simulation of flows over random urban-like obstacles. Bound-Layer Meteorol 129(1):1

    Article  Google Scholar 

  • Yakhot V, Smith LM (1992) The renormalization group, the \(\varepsilon \)-expansion and derivation of turbulence models. J Sci Comput 7(1):35–61

    Article  MathSciNet  Google Scholar 

  • Yang A-S, Su Y-S, Wen C-Y, Juan Y-H, Wang W-S, Cheng C-H (2016) Estimation of wind power generation in dense urban area. Appl Energy 171:213–230

    Article  Google Scholar 

  • Yersel M, Goble R (1986) Roughness effects on urban turbulence parameters. Bound-Layer Meteorol 37(3):271–284

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian A. Fleck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tadie Fogaing, M.B., Gordon, H., Lange, C.F., Wood, D.H., Fleck, B.A. (2019). A Review of Wind Energy Resource Assessment in the Urban Environment. In: Vasel, A., Ting, DK. (eds) Advances in Sustainable Energy. Lecture Notes in Energy, vol 70. Springer, Cham. https://doi.org/10.1007/978-3-030-05636-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05636-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05635-3

  • Online ISBN: 978-3-030-05636-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics