Skip to main content

Oxidative Stress Biomarkers and Antioxidant Defense in Plants Exposed to Metallic Nanoparticles

  • Chapter
  • First Online:
Nanomaterials and Plant Potential

Abstract

Environmental compartments are being enriched with myriads of nanoparticles (NPs) known for their unique physicochemical characteristics. Plants are sessile in nature and have greater chance to interact with environmental NPs. Oxidative stress, a condition of imbalance between the pace of reactive oxygen species (ROS) generation and its metabolism, is considered as one of undesirable consequences of NP-plant interaction. If not metabolized, ROS and its reaction products can bring irreparable changes in biomolecules and cellular organelles, disrupt the cellular redox homeostasis, and lead to cell death. In plant system, a synchronous action of enzymatic and nonenzymatic antioxidants metabolizes ROS and its reaction products and nullifies their potential consequences. Presenting an overview of the major metallic NPs, ROS-caused oxidative stress, its biomarkers, and antioxidant metabolism, this chapter highlights the modulation and role of major antioxidants in plants exposed to metallic NPs and offers tips for thought in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akerboom TP, Sies H (1981) Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol 77:373–382

    Article  CAS  Google Scholar 

  • Anjum NA, Umar S, Chan MT (2010) Ascorbate–glutathione pathway and stress tolerance in plants. Springer, Dordrecht

    Book  Google Scholar 

  • Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal M, Prasad MNV (2012a) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids – a review. Environ Exp Bot 75:307–324

    CAS  Google Scholar 

  • Anjum NA, Umar S, Ahmad A (2012b) Oxidative stress in plants: causes, consequences and tolerance. IK International Publishing House, New Delhi

    Google Scholar 

  • Anjum NA, Gill SS, Duarte AC, Pereira E, Ahmad I (2013a) Silver nanoparticles in soil-plant systems. J Nanopart Res 15:1896. https://doi.org/10.1007/s11051-013-1896-7

    Article  Google Scholar 

  • Anjum NA, Singh N, Singh MK, Shah ZA, Duarte AC, Pereira E, Ahmad I (2013b) Single-bilayer graphene oxide sheet tolerance and glutathione redox system significance assessment in faba bean (Vicia faba L.). J Nanopart Res 15:1770. https://doi.org/10.1007/s11051-013-1770-7

    Article  CAS  Google Scholar 

  • Anjum NA, Rodrigo MAM, Moulick A, Heger Z, Kopel P, Zitka O, Adam V, Lukatkin AS, Duarte AC, Pereira E, Kizek R (2016) Transport phenomena of nanoparticles in plants and animals/humans. Environ Res 151:233–243

    Article  CAS  Google Scholar 

  • Arruda SCC, Silva ALD, Galazzi RM, Azevedo RA, Arruda MAZ (2015) Nanoparticles applied to plant science: a review. Talanta 131:693–705

    Article  Google Scholar 

  • Bhatt I, Tripathi BN (2011) Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere 82:308–317

    Article  CAS  Google Scholar 

  • Carlson C, Hussain SM, Schrand AM, K. Braydich-Stolle L, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112(43):13608–13619

    Google Scholar 

  • Chichiriccò G, Poma A (2015) Penetration and toxicity of nanomaterials in higher plants. Nanomaterials 5:851–873

    Article  Google Scholar 

  • Corral-Diaz B, Peralta-Videa JR, Alvarez-Parrilla E, Rodrigo-García J, Morales MI, Osuna-Avila P, Niu G, Hernandez-Viezcas JA, Gardea-Torresdey JL (2014) Cerium oxide nanoparticles alter the antioxidant capacity but do not impact tuber ionome in Raphanus sativus (L). Plant Physiol Biochem 84:277–285

    Article  CAS  Google Scholar 

  • Cox A, Venkatachalam P, Sahi S, Sharma N (2016) Silver and titanium dioxide nanoparticle toxicity in plants: a review of current research. Plant Physiol Biochem 107:147–163

    Article  CAS  Google Scholar 

  • Dietz KJ, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16:582–589

    Article  CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012a) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14:1125

    Article  Google Scholar 

  • Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2012b) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47:1082–1090

    Article  Google Scholar 

  • Du W, Tan W, Peralta-Videa JR, Gardea-Torresdey JL, Ji R, Yin Y, Guo H (2017) Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiol Biochem 110:210–225

    Article  CAS  Google Scholar 

  • Elder A, Lynch I, Grieger K, Chan-Remillard S, Gatti A, Gnewuch H, Kenawy E, Korenstein R, Kuhlbusch T, Linker F, Matias S (2009) Human health risks of engineered nanomaterials: critical knowledge gaps in nanomaterials risk assessment. In: Linkov I, Steevens J (eds) Nanomaterials: risks and benefits. Springer, Dordrecht, pp 3–29

    Chapter  Google Scholar 

  • Faisal M, Saquib Q, Alatar AA, Al-Khedhairy AA, Hegazy AK, Musarrat J (2013) Phytotoxic hazards of NiO-nanoparticles in tomato: A study on mechanism of cell death. J Hazard Mater 250–251:318–332

    Article  Google Scholar 

  • Gerloff K, Fenoglio I, Carella E, Kolling J, Albrecht C, Boots AW, Förster I, Schins RP (2012) Distinctive toxicity of TiO2 rutile/anatase mixed phase nanoparticles on Caco-2 cells. Chem Res Toxicol 25:646–655

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  Google Scholar 

  • Gill SS, Anjum NA, Hasanuzzaman M, Gill R, Trivedi DK, Ahmad I, Pereira E, Tuteja N (2013) Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem 70:204–212

    Article  CAS  Google Scholar 

  • Handy RD, Owen R, Valsami-Jones E (2008) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17:315–325

    Article  CAS  Google Scholar 

  • He D, Jones AM, Garg S, Pham AN, Waite TD (2011) Silver nanoparticle–reactive oxygen species interactions: application of a charging–discharging model. J Phys Chem C 115:5461–5468

    Article  CAS  Google Scholar 

  • Hernandez-Viezcas J, Castillo-Michel H, Servin A, Peralta-Videa J, Gardea-Torresdey J (2011) Spectroscopic verification of zinc absorption and distribution in the desert plant Prosopis juliflora-velutina (velvet mesquite) treated with ZnO nanoparticles. Chem Eng J 170:346–352

    Article  CAS  Google Scholar 

  • Hong J, Rico CM, Zhao L, Adeleye AS, Keller AA, Peralta-Videa JR, Gardea-Torresdey JL (2015) Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ Sci Processes Impacts 17:177–185

    Article  CAS  Google Scholar 

  • Hou J, Wu Y, Li X, Wei B, Li S, Wang X (2018) Toxic effects of different types of zinc oxide nanoparticles on algae, plants, invertebrates, vertebrates and microorganisms. Chemosphere 193:852–860

    Article  CAS  Google Scholar 

  • Husen A (2017) Gold nanoparticles from plant system: synthesis, characterization and application. In: Ghorbanpourn M, Manika K, Varma A (eds) Nanoscience and plant–soil systems, vol 48. Springer International Publication, Cham, pp 455–479

    Chapter  Google Scholar 

  • Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett 9:229

    Article  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability and effects. Environ Toxicol Chem 27:1825–1851

    Article  CAS  Google Scholar 

  • Krishnaraj C, Jagan G, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT (2012) Effect of biologically synthesized silver nanoparticles on Bacopa monnieri L. Wettst. plant growth metabolism. Process Biochem 47:651–658

    Article  CAS  Google Scholar 

  • Kumari M, Khan SS, Pakrashi S, Mukherjee A, Chandrasekaran N (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190:613–621

    Article  CAS  Google Scholar 

  • Li M, Ahammed GJ, Li C, Bao X, Yu J, Huang C, Yin H, Zhou J (2016) Brassinosteroid ameliorates zinc oxide nanoparticles-induced oxidative stress by improving antioxidant potential and redox homeostasis in tomato seedling. Front Plant Sci 7:615. https://doi.org/10.3389/fpls.2016.00615

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu D, Wang X, Lin Y, Chen Z, Xu H, Wang L (2012) The effects of cerium on the growth and some antioxidant metabolisms in rice seedlings. Environ Sci Pollut Res 19:3282–3291

    Article  CAS  Google Scholar 

  • Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061

    Article  CAS  Google Scholar 

  • Ma C, Chhikara S, Xing B, Musante C, White JC, Dhankher OP (2013) Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain Chem Eng 1:768–778

    Article  CAS  Google Scholar 

  • Ma C, White JC, Dhankher OP, Xing B (2015a) Metal-based nanotoxicity and detoxification pathways in higher plants. Environ Sci Technol 49:7109–7122

    Article  CAS  Google Scholar 

  • Ma C, Chhikara S, Minocha R, Long S, Musante C, White JC, Xing B, Dhankher OP (2015b) Reduced silver nanoparticle phytotoxicity in Crambe abyssinica with enhanced glutathione production by overexpressing bacterial γ-glutamylcysteine synthase. Environ Sci Technol 49:10117–10126

    Article  CAS  Google Scholar 

  • Marcelis LFM, Hauvelink E, van Dijk D (1997) Pithiness and growth of radish tubers as affected by irradiance and plant density. Ann Bot 79:397–402

    Article  Google Scholar 

  • Marslin G, Sheeba CJ, Franklin G (2017) Nanoparticles alter secondary metabolism in plants via ROS burst. Front Plant Sci 8:832. https://doi.org/10.3389/fpls.2017.00832

    Article  PubMed  PubMed Central  Google Scholar 

  • Morales MI, Rico CM, Hernandez-Viezcas JA, Nunez JE, Barrios AC, Flores Marges JP, Peralta-Videa JR, Gardea-Torresdey JL (2013) Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum) plants grown in organic soil. J Agric Food Chem 61:6224–6230

    Article  CAS  Google Scholar 

  • Mourato M, Reis R, Martins ML (2012) Chapter 2: Characterization of plant antioxidative system in response to abiotic stresses: a focus on heavy metal toxicity. In: Montanaro G, Dichio B (eds) Advances in selected plant physiology aspects. InTech, Rijeka ISBN 978-953-51-0557.

    Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453

    Article  CAS  Google Scholar 

  • Mukherjee A, Peralta-Videa JR, Bandyopadhyay S, Rico CM, Zhao LJ, Gardea-Torresdey JL (2014) Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6:132–138

    Article  CAS  Google Scholar 

  • Nair PG, Chung I (2014a) Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignification, and molecular level changes. Environ Sci Pollut Res 21:12709–12722

    Article  CAS  Google Scholar 

  • Nair PMG, Chung IM (2014b) Assessment of silver nanoparticle-induced physiological and molecular changes in Arabidopsis thaliana. Environ Sci Pollut Res 21:8858–8869

    Article  CAS  Google Scholar 

  • Nekrasova GF, Ushakova OS, Ermakov AE, Uimin MA (2011) Effects of copper (II) ions and copper oxide nanoparticles on Elodea densa Planch. Russ J Ecol 42:458–463

    Article  CAS  Google Scholar 

  • Panda KK, Achary VMM, Krishnaveni R, Padhi BK, Sarangi SN, Sahu SN, Panda BB (2011) In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicol In Vitro 25:1097–1105

    Article  CAS  Google Scholar 

  • Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14(9):1109

    Article  Google Scholar 

  • Priester JH, Ge Y, Mielke RE, Horst AM, Moritz SC, Espinosa K, Gelb J, Walker SL, Nisbet RM, An Y-J, Schimel JP, Palmer RG, Hernandez-Viezcas JA, Zhao L, Gardea-Torresdey JL, Holden PA (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc Natl Acad Sci 109:E2451–E2456

    Article  CAS  Google Scholar 

  • Priester JH, Moritz SC, Espinosa K, Ge Y, Wang Y, Nisbet RM, Schimel JP, Goggi AS, Gardea-Torresdey JL, Holden PA (2017) Damage assessment for soybean cultivated in soil with either CeO2 or ZnO manufactured nanomaterials. Sci Total Environ 579:1756–1768

    Article  CAS  Google Scholar 

  • Rao S, Shekhawat GS (2016) Phytotoxicity and oxidative stress perspective of two selected nanoparticles in Brassica juncea. 3 Biotech 6(2):244. https://doi.org/10.1007/s13205-016-0550-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Rico C, Hong J, Morales MI, Zhao L, Barrios AC, Zhang J-Y, Peralta-Videa JR, Gardea-Torresdey JL (2013) Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol 47:5635–5642

    Article  CAS  Google Scholar 

  • Rico CM, Peralta-Videa JR, Gardea-Torresdey JL (2015) Chemistry, biochemistry of nanoparticles, and their role in antioxidant defense system in plants. In: Siddiqui MH, Al-Whaibi MH, Mohammad F (eds) Nanotechnology and plant sciences. Springer International Publishing, Cham, pp 1–17

    Google Scholar 

  • Royal Society (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. http://www.nanotec.org.uk/finalReport.htm.

    Google Scholar 

  • Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93:906–915

    Article  CAS  Google Scholar 

  • Shaw AK, Ghosh S, Kalaji HM, Bosa K, Brestic M, Zivcak M, Hossain Z (2014) Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.). Environ Exp Bot 102:37–47

    Article  CAS  Google Scholar 

  • Siddiqi KS, Husen A (2016) Engineered gold nanoparticles and plant adaptation potential. Nanoscale Res Lett 11:400

    Article  Google Scholar 

  • Siddiqi KS, Husen A (2017) Plant response to engineered metal oxide nanoparticles. Nanoscale Res Lett 12:92

    Article  Google Scholar 

  • Siddiqi KS, Husen A, Rao RAK (2018) A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnol 16:14

    Article  Google Scholar 

  • Soares C, Branco-Neves S, de Sousa A, Pereira R, Fidalgo F (2016) Ecotoxicological relevance of nano-NiO and acetaminophen to Hordeum vulgare L.: combining standardized procedures and physiological endpoints. Chemosphere 165:442–452

    Google Scholar 

  • Soares C, Branco-Neves S, de Sousa A, Pereira R, Fidalgo F (2018a) Ecotoxicological relevance of nano-NiO and acetaminophen to Hordeum vulgare L.: combining standardized procedures and physiological endpoints. Chemosphere 165:442–452

    Article  Google Scholar 

  • Soares C, Branco-Neves S, de Sousa A, Azenha M, Cunha A, Pereira R, Fidalgo F (2018b) SiO2 nanomaterial as a tool to improve Hordeum vulgare L. tolerance to nano-NiO stress. Sci Total Environ 622-623:517–525

    Article  CAS  Google Scholar 

  • Song G, Gao Y, Wu H, Hou W, Zhang C, Ma H (2012) Physiological effect of anatase TiO2 nanoparticles on Lemna minor. Environ Toxicol Chem 31:2147–2152

    Article  CAS  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 6:257–262

    Article  CAS  Google Scholar 

  • Thwala M, Musee N, Sikhwivhilu L, Wepener V (2013) The oxidative toxicity of Ag and ZnO nanoparticles towards the aquatic plant Spirodela punctata and the role of testing media parameters. Environ Sci Processes Impacts 15:1830–1843

    Article  CAS  Google Scholar 

  • Tripathi DK, Tripathi A, Shweta Singh S, Singh Y, Vishwakarma K, Yadav G, Sharma S, Singh VK, Mishra RK, Upadhyay RG, Dubey NK (2017) Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review. Front Microbiol 8:07. https://doi.org/10.3389/fmicb.2017.00007

    Article  PubMed  PubMed Central  Google Scholar 

  • Trujillo-Reyes J, Majumdar S, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2014) Exposure studies of core–shell Fe/Fe3O4 and Cu/CuO NPs to lettuce (Lactuca sativa) plants: Are they a potential physiological and nutritional hazard? J Hazard Mater 267:255–263

    Article  CAS  Google Scholar 

  • US-Environmental Protection Agency (2007) Nanotechnology white paper. US Environmental Protection Agency, Washington, DC, p 132

    Google Scholar 

  • Van Aken B (2015) Gene expression changes in plants and microorganisms exposed to nanomaterials. Curr Opin Biotechnol 33:206–219

    Article  Google Scholar 

  • Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27:612–616

    Article  CAS  Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–222

    Article  CAS  Google Scholar 

  • Yanık F, Vardar F (2018) Oxidative stress response to aluminum oxide (Al2O3) nanoparticles in Triticum aestivum. Biologia 73:129–135

    Article  Google Scholar 

  • Yasur J, Rani P (2013) Environmental effects of nanosilver: impact on castor seed germination, seedling growth, and plant physiology. Environ Sci Pollut Res 20:8636–8648

    Article  CAS  Google Scholar 

  • Zhang H, Peng C, Yang J-J, Shi J-Y (2013) Eco-toxicological effect of metal-based nanoparticles on plants: research progress. Chin J Appl Ecol 24:885–892

    CAS  Google Scholar 

  • Zhao L, Peng B, Hernandez-Viezcas JA, Rico C, Sun Y, Peralta-Videa JR, Tang X, Niu G, Jin L, Varela-Ramirez A, Zhang JY (2012) Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat-shock protein, and lipid peroxidation. ACS Nano 6:9615–9622

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anjum, N.A., Gill, S.S., Duarte, A.C., Pereira, E. (2019). Oxidative Stress Biomarkers and Antioxidant Defense in Plants Exposed to Metallic Nanoparticles. In: Husen, A., Iqbal, M. (eds) Nanomaterials and Plant Potential. Springer, Cham. https://doi.org/10.1007/978-3-030-05569-1_17

Download citation

Publish with us

Policies and ethics