Skip to main content

Wind Turbine Aerodynamic Noise Sources

  • Living reference work entry
  • First Online:
Handbook of Wind Energy Aerodynamics

Abstract

In this chapter, the basic phenomena and mechanisms responsible for wind turbine noise are investigated. Current scientific knowledge from theoretical and experimental points of view and existing studies on the subject are reviewed. Here, the focus is on aerodynamic noise sources as these are in usual conditions the main contributors to wind turbine noise, although some other noise mechanisms are also shortly discussed. Individual aerodynamic noise sources are investigated first. Then, the focus is set on noise from a wind turbine, and finally from a wind farm, as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    As an example, stall may inadvertedly occur on part of the (or the whole) blade span due to peculiar operational conditions, triggering momentarily specific noise emission characteristics. This phenomenon is quite difficult to predict and simulate with accuracy, not least because stall itself is complex and difficult to precisely forecast.

References

  • Amiet RK (1975) Acoustic radiation from an airfoil in a turbulent stream. J Sound Vib 41(4):407–420. https://doi.org/10.1016/S0022-460X(75)80105-2

  • Amiet RK (1976a) High-frequency thin airfoil theory for subsonic flow. AIAA J 14(8):1076–1082. https://doi.org/10.2514/3.7187

    Article  MATH  Google Scholar 

  • Amiet RK (1976b) Noise due to turbulent flow past a trailing edge. J Sound Vib 47(3):387–393. https://doi.org/10.1016/0022-460X(76)90948-2

  • Arakawa C, Fleig O, Iida M, Shimooka M Numerical approach for noise reduction of wind turbine blade tip with earth simulator. J Earth Simul 2:11–33 (2005)

    Google Scholar 

  • Barlas E, Zhu WJ, Shen WZ, Dag KO, Moriarty P (2017) Consistent modelling of wind turbine noise propagation from source to receiver. J Acoust Soc Am 142(5):3297–3310. https://doi.org/10.1121/1.5012747

    Article  Google Scholar 

  • Bass J, Cand M, Coles D, Davis R, Irvine G, Leventhall G, Levet T, Miller S, Sexton D, Shelton J (2016) A method for rating amplitude modulation in wind turbine noise. Retrieved from: https://www.ioa.org.uk/sites/default/files/AMWGFinal_Report-09-08-2016_1.pdf, IOA Noise Working Group (Wind Turbine Noise), Institute of Acoustics. Accessed 24 Oct 2018

  • van den Berg GP (2006) The sound of high winds. Ph.D. Thesis, University of Groningen . (Available online: https://www.rug.nl/research/portal/files/14548137/17_thesis.pdf)

  • Bertagnolio F (2017) A temporal wind turbine model for low-frequency noise. In: InterNoise17, INTER-NOISE and NOISE-CON Congress and Conference Proceedings, pp. 5025–5033. INCE (publisher), Hong Kong

    Google Scholar 

  • Bertagnolio F, Madsen HA (2021) A tower wake model for low-frequency noise of downwind turbine rotors. In: 9th International conference on wind turbine noise, Conference Proceedings. Online conference

    Google Scholar 

  • Bertagnolio F, Madsen HA, Fischer A (2017) A combined aeroelastic-aeroacoustic model for wind turbine noise: verification and analysis of field measurements. Wind Energy 20(8):1331–1348. https://doi.org/10.1002/we.2096

    Article  Google Scholar 

  • Bertagnolio F, Madsen HA, Fischer A, Bak C (2017) A semi-empirical airfoil stall noise model based on surface pressure measurements. J Sound Vib 387:127–162. https://doi.org/10.1016/j.jsv.2016.09.033

    Article  Google Scholar 

  • Bertagnolio F, Masdsen HA, Fischer A (2018) Noise emission from wind turbines in wake – measurement and modeling. In: Torque 2018 ‘The Science of Making Torque from Wind’ Conference (EWEA), Conf. Proceedings. Milano. https://doi.org/10.1088/1742-6596/1037/2/022001

  • Bilka MJ, Morris SC, Berntsen C, Silver JC, Shannon DW (2014) Flowfield and sound from a blunt trailing edge with varied thickness. AIAA J 52(1):52–61. https://doi.org/10.2514/1.J052550

    Article  Google Scholar 

  • Bolin K, Bluhm G, Eriksson G, Nilsson ME (2011) Infrasound and low frequency noise from wind turbines: exposure and health effects. Environ Res Lett 6(3):035103 (6pp) . https://doi.org/10.1088/1748-9326/6/3/035103

  • Boorsma K, Schepers JG (2011) Enhanced wind turbine noise prediction tool SILANT. In: Fourth international meeting on wind turbine noise, Conference Proceedings, Rome

    Google Scholar 

  • Bortolotti P, Branlard E, Platt A, Moriarty P, Bottasso C, Sucameli C (2020) Aeroacoustics noise model of OpenFAST. Technical Report NREL/TP-5000-75731, National Renewable Energy Laboratory (NREL), Golden (CO). https://doi.org/10.2172/1660130

  • Bowdler D (2008) Amplitude modulation of wind turbine noise, a review of the evidence. Inst Acoustics Bull 33(4):9

    Google Scholar 

  • Braun KA, Gordner A, Huurdeman B (1996) Investigation of blade tip modifications for acoustic noise reduction and rotor performance improvement: final report. JOUR-CT90-0111 and JOU2-CT92-0205, Institut für Computer Anwendungen (ICA), Stuttgart University (DE)

    Google Scholar 

  • Brooks TF, Pope SD, Marcolini MA (1989) Airfoil self-noise and prediction. NASA Reference Publication 1218, NASA Langley Research Center, Hampton

    Google Scholar 

  • Buck S, Oerlemans S, Palo S (2016) Experimental characterization of turbulent inflow noise on a full-scale wind turbine. J Sound Vib 385:219–238. https://doi.org/10.1016/j.jsv.2016.09.010

    Article  Google Scholar 

  • Chandiramani K (1974) Diffraction of evanescent waves with applications to aerodynamically scattered sound and radiation from unbaffled plates. J Acoust Soc Am 55(1):19–29

    Article  MATH  Google Scholar 

  • Chase D (1972) Sound radiated by turbulent flow off a rigid half-plane as obtained from a wavevector spectrum of hydrodynamic pressure. J Acoust Soc Am 52(3B):1011–1023

    Article  MATH  Google Scholar 

  • Christophe J, Anthoine J, Moreau S (2009) Trailing edge noise of a controlled-diffusion airfoil at moderate and high angle of attack. In: Proceedings of the 15th AIAA/CEAS aeroacoustics conference, AIAA Paper 2009-3196, Miami. https://doi.org/10.2514/6.2009-3196

  • Curle N (1955) The influence of solid boundaries upon aerodynamic sound. Proc R Soc Lond Ser A231 (1187):505–514. https://doi.org/10.1098/rspa.1955.0191

    MathSciNet  MATH  Google Scholar 

  • Devenport WJ, Staubs JK, Glegg SAL (2010) Sound radiation from real airfoils in turbulence. J Sound Vib 329(17):3470–3483. https://doi.org/10.1016/j.jsv.2010.02.022

    Article  Google Scholar 

  • Doolan CJ (2013) A review of wind turbine noise perception, annoyance and low frequency emission. Wind Eng 37(1):97–104. https://doi.org/10.1260/0309-524X.37.1.97

    Article  Google Scholar 

  • Drela M (1989) Chapter, Low reynolds number aerodynamics, vol. 54. In: Mueller TJ (ed) XFOIL: an analysis and design system for low reynolds number airfoils, pp 1–12. Lecture notes in engineering. Springer, Berlin. https://doi.org/10.1007/978-3-642-84010-4_1

    Google Scholar 

  • Drobietz R, Kinzie KW, Petitjean B (2011) Wind turbine blade noise mitigation technologies. In: VDI-Fachkonferenz: Schall und Schallemissionen von Windenergieanlagen, Hamburg

    Google Scholar 

  • Farassat F, Succi GP (1980) A review of propeller discrete frequency noise prediction technology with emphasis on two current methods for time domain calculations. J Sound Vib 71(3):399–419. https://doi.org/10.1016/0022-460X(80)90422-8

    Article  Google Scholar 

  • Ffowcs Williams JE, Hall LH (1970) Aerodynamic sound generation by turbulent flow in the vicinity of a scattering half plane. J Fluid Mech 40(4):657–670. https://doi.org/10.1017/S0022112070000368

    Article  MATH  Google Scholar 

  • Ffowcs Williams JE, Hawkings DL (1969) Sound generated by turbulence and surfaces in arbitrary motion. Philos Trans R Soc A264(1151):321–342. https://doi.org/10.1098/rsta.1969.0031

    MATH  Google Scholar 

  • Fischer A, Bertagnolio F, Madsen HA (2017) Improvement of TNO type trailing edge noise models. European J Mech B Fluids 61:255–262

    Article  MATH  Google Scholar 

  • George AR, Najjar FE, Kim YN (1980) Noise due to tip vortex formation on lifting rotors. In: 6th aeroacoustics conference, AIAA Paper 1980-1010, Hartford. https://doi.org/10.2514/6.1980-1010

  • Gershfeld J (2004) Leading edge noise from thick foils in turbulent flows. J Acoust Soc Am 116(3):1416–1426. https://doi.org/10.1121/1.1780575

    Article  Google Scholar 

  • Glauert H (1935) Airplane propellers, vol. In: Aerodynamic theory volume IV. Springer, Berlin/Heidelberg. https://doi.org/10.1007/978-3-642-91487-4_3

    Google Scholar 

  • Glegg S, Devenport W (2017) Aeroacoustics of low mach number flows – fundamentals, analysis, and measurement. Academic Press. (ISBN: 978-0-12-809651-2)

    Google Scholar 

  • Graham JMR (2017) Rapid distortion of turbulence into an open turbine rotor. J Fluid Mech 825:764–794. https://doi.org/10.1017/jfm.2017.400

    Article  MathSciNet  MATH  Google Scholar 

  • Griffin DA (1996) Investigation of vortex generators for augmentation of wind turbine power performance. Technical report, NREL, Golden (CO). https://doi.org/10.2172/414367. Tech. Rep. NREL/SR-440-21399 (Contract No. DE-AC36-83CH10093, Subcontract No. ZAA-5-12272-05)

  • Guidati G, Wagner S (1997) Simulation of aerodynamic sound generation in low mach-number flows. In: Fifth international congress on sound and vibration, Conference Proceedings. Adelaide. Retrieved from https://www.acoustics.asn.au/conference_proceedings/ICSVS-1997/pdf/scan/sv970090.pdf (4 June 2018)

  • Heiden J, Sødergaard B, Oxholm R (2017) Does low frequency sound insulation correlate with the standard sound reduction index – Rw? In: INTER-NOISE and NOISE-CON congress and conference proceedings, InterNoise17, Conference Proceedings, pp 2600–2607, Hong-Kong

    Google Scholar 

  • Hirschberg A, Rienstra SW (2004) An introduction to aeroacoustics. Technical report, Eindhoven University of Technology. (Available online: http://www.win.tue.nl/~sjoerdr/papers/les-swr-mh.pdf)

  • Hoffmeyer D, Jakobsen J (2010) Sound insulation of dwellings at low frequencies. J Low Freq Noise Vib Active Control 29(1):15–23. https://doi.org/10.1260/0263-0923.29.1.15

    Article  Google Scholar 

  • Howe MS (1978) A review of the theory of trailing edge noise. J Sound Vib 61(3):437–465. https://doi.org/10.1016/0022-460X(78)90391-7

    Article  MATH  Google Scholar 

  • International Standard, Wind Turbines – Part 11: Acoustic Noise Measurement Techniques. IEC 61400-11, International Electrotechnical Commission, Geneva (CH) (2012). ISBN 978-2-83220-463-4

    Google Scholar 

  • Jakobsen J (2001) Danish guidelines on environmental low frequency noise, infrasound and vibration. J Low Freq Noise Vib Active Control 20(3):141–148. https://doi.org/10.1.1.875.5647

    Article  MathSciNet  Google Scholar 

  • Jakobsen J (2005) Infrasound emission from wind turbine. J Low Freq Noise Vib Active Control 24(3):145–155. https://doi.org/10.1260/026309205775374451

    Article  Google Scholar 

  • van Kalken JHN, Ceyhan-Yilmaz O (2017) InnoTip end report. ECN-O–17-011, Energy Reseach Center of The Netherlands (ECN). (Available online: https://www.ecn.nl/publicaties/PdfFetch.aspx?nr=ECN-O--17-011)

  • Kamruzzaman M, Lutz T, Herrig A, Krämer E (2012) Semi-empirical modeling of turbulent anisotropy for airfoil self noise predictions. AIAA J 50(1):46–60

    Article  Google Scholar 

  • Kingan MJ, Pearse JR (2009) Laminar boundary layer instability noise produced by an aerofoil. J Sound Vib 322(4–5):808–828. https://doi.org/10.1016/j.jsv.2008.11.043

    Article  Google Scholar 

  • Klein L, Gude J, Wenz F, Lutz T, Krämer E (2018) Advanced CFD-MBS coupling to assess low-frequency emissions from wind turbines. Wind Energy Sci 3:713–728. https://doi.org/10.5194/wes-3-713-2018

    Article  Google Scholar 

  • Kocheemoolayil JG, Wolf W, Lele SK (2014) Large eddy simulation of stall noise. In: Proceedings of the 20th AIAA/CEAS aeroacoustics Conference, AIAA Paper 2014-3182, Atlanta. https://doi.org/10.2514/6.2014-3182

  • Kraichnan RH (1956) Pressure fluctuations in turbulent flow over a flat plate. J Acoust Soc Am 28(3):378–390. https://doi.org/10.1121/1.1908336

    Article  MathSciNet  Google Scholar 

  • Lepoutre P, Avan P, Cadene A, Ecotière D, Evrard AS, Moati F, Topilla E (2017) Health effects of low frequency noise and infrasound from wind farms: results from an independent collective expertise in France. In: 12th ICBEN congress on noise as a public health problem, conference proceedings, p 9, Zürich

    Google Scholar 

  • Leventhall G, Pelmear P, Benton S (2003) A review of published research on low frequency noise and its effects. Technical report, Department for Environment, Food and Rural Affairs, London. (Available online: http://www.defra.gov.uk)

  • Lighthill MJ (1952) On sound generated aerodynamically. I. General theory. Proc R Soc Lond A 211(1107):564–587. https://doi.org/10.1098/rspa.1952.0060

    Article  MathSciNet  MATH  Google Scholar 

  • Lighthill MJ (1954) On sound generated aerodynamically. II. Turbulence as a source of sound. Proc R Soc Lond A 222(1148):1–32. https://doi.org/10.1098/rspa.1954.0049

    MATH  Google Scholar 

  • Lowson MV, Ollerhead JB (1969) A theoretical study of helicopter rotor noise. J Sound Vib 9(2):197–222. https://doi.org/10.1016/0022-460X(69)90028-5

    Article  Google Scholar 

  • Lutz T, Herrig A, Würz W, Kamruzzaman M, Krämer E (2007) Design and wind-tunnel verification of low-noise airfoils for wind turbines. AIAA J 45(4):779–785

    Article  Google Scholar 

  • Lyu B, Azarpeyvand M, Sinayoko S (2016) Prediction of noise from serrated trailing edges. J Fluid Mech 793:556–588

    Article  MathSciNet  MATH  Google Scholar 

  • Madsen HA (2010) Low frequency noise from wind turbines mechanisms of generation and its modelling. J Low Freq Noise Vib Active Control 29(4):239–251. https://doi.org/10.1260/0263-0923.29.4.239

    Article  Google Scholar 

  • Madsen HA, Bak C, Paulsen US, Gaunaa M, Fuglsang P, Romblad J, Olesen NA, Enevoldsen P, Laursen J, Jensen L (2010) The DAN-AERO MW experiments. In: 48th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition (Proceedings), AIAA Paper 2010-645, Orlando

    Google Scholar 

  • Madsen HA, Bertagnolio F, Andreas A, Bak C (2014) Correlation of amplitude modulation to inflow characteristics. In: Inter-noise 2014, conference proceedings, Melbourne

    Google Scholar 

  • Madsen HA, Fuglsang P (1996) Numerical investigation of different tip shapes for wind turbine blades – aerodynamic and aeroacoustic aspects. Technical Report Risø-R-891(EN), Risø Natl. Lab., Roskilde

    Google Scholar 

  • Madsen HA, Johansen J, Sørensen NN, Larsen GC, Hansen MH (2007) Simulation of low frequency noise from a downwind wind turbine rotor. In: 45th AIAA aerospace sciences meeting and exhibit, AIAA 2007-623. Reno (NV). https://doi.org/10.2514/6.2007-623

  • Maijala P, Turunen A, Kurki I, Vainio L, Pakarinen S, Kaukinen C, Lukander K, Tiittanen P, Yli-Tuomi T, Taimisto P, Lanki T, Tiippana K, Virkkala J, Stickler E, Sainio M (2020) Infrasound does not explain symptoms related to wind turbines. Publications of the Government’s analysis, assessment and research activities 2020:34, Prime Minister’s Office, Helsinki. Available online: http://urn.fi/URN:ISBN:978-952-287-907-3

  • Makarewicz R, Kokowski P (2011) Estimation of the effect of shadow zone boundary for noise calculation on large wind turbines. Noise Control Eng J 59(4):341–346. https://doi.org/10.3397/1.3600700

    Article  Google Scholar 

  • Mann J (1994) The spatial structure of neutral atmospheric surface-layer turbulence. J Fluid Mech 273:141–168. https://doi.org/10.1017/S0022112094001886

    Article  MATH  Google Scholar 

  • Marmo B, Stauber J, Black D, Buckingham MP (2017) Tonal noise mitigation of wind turbines. In: 7th international conference on wind turbine noise, Conference Proceedings, Rotterdam

    Google Scholar 

  • Møller H, Pedersen CS (2010) Low-frequency noise from large wind turbines. J Acoust Soc Am 129(6):3727–3744. https://doi.org/10.1121/1.3543957

    Article  Google Scholar 

  • Moreau DJ, Doolan CJ, Alexander WN, Meyers TW, Devenport WJ (2016) Wall-mounted finite airfoil-noise production and prediction. AIAA J 54(5):1637–1651. https://doi.org/10.2514/1.J054493

    Article  Google Scholar 

  • Moreau S, Roger M, Christophe J (2009) Flow features and self-noise of airfoils near stall or stall. In: Proceedings of the 15th AIAA/CEAS aeroacoustics Conference, AIAA Paper 2009-3198, Miami. https://doi.org/10.2514/6.2009-3198

  • Moriarty P, Guidati G, Migliore P (2004) Recent improvement of a semi-empirical aeroacoustic code for wind turbines. In: Proceedings of the 10th AIAA/CEAS aeroacoustics conference, AIAA paper 2004-3041, Manchester

    Google Scholar 

  • Moriarty P, Guidati G, Migliore P (2005) Prediction of turbulent inflow and trailing-edge noise for wind turbines. In: Proceedings of the 11th AIAA/CEAS aeroacoustics conference, AIAA Paper 2005-2881, Monterey. https://doi.org/10.2514/6.2005-2881

  • Mueller-Vahl H, Pechlivanoglou G, Nayeri CN, Paschereit CO (2012) Simulations of wind turbine rotor with vortex generators. In: ASME turbo expo 2012: turbine technical conference and exposition volume 6: oil and gas applications; concentrating solar power plants; steam turbines; wind energy, pp 899–914, Copenhagen. https://doi.org/10.1115/GT2012-69197

  • Nagarajan S, Hahn S, Lele SK (2006) Prediction of sound generation by a pitching airfoil: a comparison of RANS and LES. In: Proceedings of the 12th AIAA/CEAS aeroacoustics conference, AIAA paper 2006-2516, Cambridge. https://doi.org/10.2514/6.2006-2516

  • Oerlemans S (2009) Detection of aeroacoustic sound sources on aircraft and wind turbines. Ph.D. Thesis, University of Twente, Enschede. (Available online: http://purl.org/utwente/67363)

  • Oerlemans S (2016) Quiet wind turbines by using “owl technology”. In: Wind energy hamburg, Hamburg

    Google Scholar 

  • Oerlemans S, Sijtsma P, López BM (2007) Location and quantification of noise on a wind turbine. J Sound Vib 299(5–6):869–883. https://doi.org/10.1016/j.jsv.2006.07.032

    Article  Google Scholar 

  • Parchen R (1998) Progress report DRAW: a prediction scheme for trailing-edge noise based on detailed boundary-layer characteristics. TNO Rept. HAG-RPT-980023, TNO Institute of Applied Physics, The Netherlands

    Google Scholar 

  • Paterson RW, Amiet RK (1976) Acoustic radiation and surface pressure characteristics of an airfoil due to incident turbulence. In: 3rd AIAA aero-acoustics conference, conference proceedings, Palo Alto. https://doi.org/10.2514/6.1976-571

  • Pawlaczyk-Luszczyńiska M, Dudarewicz A, Waszkowska M, Szymczac W, Sliwińska-Kowalska M (2005) The impact of low-frequency noise on human mental performance. Int J Occupational Med Environ Health 18(2):185–198

    Google Scholar 

  • Pierce AD (1989) Acoustics – an introduction to its physical principles and applications. McGraw-Hill Series in mechanical engineering. McGraw-Hill, New York

    Google Scholar 

  • Poul la Cour Tunnel (The Danish Aerodynamic and Acoustic Wind Tunnel). https://www.plct.dk/media-and-press. Accessed 20 Apr 2021

  • Proudman I (1952) The generation of noise by isotropic turbulence. Proc R Soc Lond A 214(1116):119–132. https://doi.org/10.1098/rspa.1952.0154

    Article  MathSciNet  MATH  Google Scholar 

  • Ratzel U, Bayer O, Brachat P, Hoffmann M, Jänke K, Kiesel KJ, Mehnert C, Scheck C, Westerhausen C, Krapf KG, Herrmann L, Blaul J (2016) Low-frequency noise incl. infrasound from wind turbines and other sources. (For the Ministry for the Environment, Climate and Energy of the Federal State of Baden-Württemberg), LUBW Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg (State Office for the Environment, Measurement and Nature Conservation of the Federal State of Baden-Wuerttemberg)

    Google Scholar 

  • Roach PE The generation of nearly isotropic turbulence downstream of streamwise tube bundles. Int J Heat Fluid Flow 7(2):117–125 (1986). https://doi.org/10.1016/0142-727X(86)90059-7

  • Sandberg RD, Jones L (2010) Direct numerical simulations of airfoil self-noise. In: IUTAM symposium on computational aero-acoustics for aircraft noise prediction. Proc Eng 62:274–282

    Article  Google Scholar 

  • Sandberg RD, Jones L (2011) Direct numerical simulations of low Reynolds number flow over airfoils with trailing-edge serrations. J Sound Vib 330:3818–3831. https://doi.org/10.1016/j.jsv.2011.02.005

    Article  Google Scholar 

  • Sandberg RD, Sandham ND (2008) Direct numerical simulation of turbulent flow past a trailing edge and the associated noise generation. J Fluid Mech 596:353–385. https://doi.org/10.1017/S0022112007009561

    Article  MATH  Google Scholar 

  • Santana LD, Christophe J, Schram C, Desmet W (2016) Rapid distortion theory modified turbulence spectra for semi-analytical airfoil noise prediction. J Sound Vib 383:349–363. https://doi.org/10.1016/j.jsv.2016.07.026

    Article  Google Scholar 

  • Schepers JG, Curvers A, Oerlemans S, Braun K, Lutz T, Herrig A, Würz W, Lopez BM (2005) SIROCCO: silent rotors by acoustic optimization. In: Wind turbine noise: perspectives for control, conference proceedings, Berlin

    Google Scholar 

  • Schepers JG, Curvers A, Oerlemans S, Braun K, Lutz T, Herrig A, Würz W, Mantesanz A, Garcillán L, Fischer M, Koegler K, Maeder T (2007) SIROCCO: silent rotors by acoustic optimization. In: 2nd international meeting on wind turbine noise, conference proceedings, Lyon

    Google Scholar 

  • Schneider M, Lucius A (2016) Investigation of axial fan tip noise mechanisms by means of CAA and beamforming technique. In: InterNoise16, INTER-NOISE and NOISE-CON congress and conference proceedings, pp 3866–3877. INCE (publisher), Hamburg

    Google Scholar 

  • Schuele CY, Rossignol KS (2013) Trailing-edge noise modeling and validation for separated flow conditions. In: 19st AIAA/CEAS aero-acoustics conference, AIAA paper 2013-2008, Berlin

    Google Scholar 

  • Sears WR (1941) Some aspects of non-stationary airfoil theory and its practical application. J Aeronaut Sci 8(3):104–108. https://doi.org/10.2514/8.10655

    Article  MathSciNet  MATH  Google Scholar 

  • Shepherd KP, Hubbard HH (1991) Physical characteristics and perception of low frequency noise from wind turbines. Noise Control Eng J 36(1):5–15. https://doi.org/10.3397/1.2827777

    Article  Google Scholar 

  • Sjöström A, Novak C, Bard D, Persson K, Sandberg G (2014) Wind turbine tower resonance. In: Inter-noise 2014, conference proceedings, Melbourne

    Google Scholar 

  • Skrzypinski WR, Gaunaa M, Bak C (2014) The effect of mounting vortex generators on the DTU 10MW reference wind turbine blade. J Phys Conf Ser (Online) 524(1). https://doi.org/10.1088/1742-6596/524/1/012034

  • Søndergaard B (2014) Noise and low frequency noise from wind turbines. In: Inter-noise 2014, conference proceedings, Melbourne

    Google Scholar 

  • Suryadi A, Herr M (2015) Wall pressure spectra on a DU96-W-180 profile from low to pre-stall angles of attack. In: 21st AIAA/CEAS aero-acoustics conference, AIAA Paper 2015-2688, Dallas

    Google Scholar 

  • Sytsma MJ, Ukeiley L (2011) Wind tunnel generated turbulence. In: 49th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, Orlando. https://doi.org/10.2514/6.2011-1159

  • The Measurement of Low Frequency Noise at Three UK Wind Farms. for the Department of Trade and Industry (DTI), Contract No. W/45/00656/00/00, URN No. 06/1412, Hayes McKenzie Partnership, Ltd. (2006)

    Google Scholar 

  • “TREMAC” Research Project: Objective criteria for vibration and sound emissions of onshore wind turbines (For the Federal Ministry for Economic Affairs and Energy, Germany, Project Nr. 0325839). http://www.windfors.de/english/tremac.html (2016-2019). Accessed 03 Aug 2018

  • Troldborg N, Zahle F, Sørensen NN (2016) Simulations of wind turbine rotor with vortex generators. J Phys Conf Ser (Online) 753(2). https://doi.org/10.1088/1742-6596/753/2/022057

  • van der Velden W, Casalino D (2019) Towards digital wind turbine noise certification. In: 9th international conference on wind turbine noise, conference proceedings, Lisbon

    Google Scholar 

  • van der Velden WC, Oerlemans S (2017) Numerical analysis of noise reduction mechanisms on improved trailing edge serrations using the Lattice Boltzmann method. In: AIAA SciTech Forum, 35th wind energy symposium. https://doi.org/10.2514/6.2017-1379

  • Viterna LA (1981) Method for predicting impulsive noise generated by wind turbine rotors. In: Second DOE/NASA “Wind Turbine Dynanmics” Workshop, conference proceedings, Cleveland

    Google Scholar 

  • Viterna LA (1982) Method for predicting impulsive noise generated by wind turbine rotors. In: The 1982 international conference on noise control engineering, conference proceedings, San Francisco. (DOE/NASA/20320-36, NASA TM-82794)

    Google Scholar 

  • Viterna LA, Janetzke DC (1982) Theoretical and experimental power from large horizontal-axis wind turbines. Technical report, NASA Lewis Research Center, Cleveland. DOE/NASA/20320-41, NASA TM-82944

    Google Scholar 

  • Wagner S, Bareiß R, Guidati G (1996) Wind turbine noise. Springer, Berlin. https://doi.org/10.1007/978-3-642-88710-9

    Book  Google Scholar 

  • Wang M, Moin P (2000) Computation of trailing-edge flow and noise using large-Eddy simulation. AIAA J 38(12):2201–2209. https://doi.org/10.2514/2.895

    Article  Google Scholar 

  • Willshire WL (1985) Long range downwind propagation of low-frequency sound. Technical Report NASA-TM-86409, NASA Langley Research Center, Hampton

    Google Scholar 

  • Wind Turbine Amplitude Modulation: Research to Improve Understanding as to its Cause and Effect. https://www.renewableuk.com/resource/collection/4E7CC744-FEF2-473B-AF2B-135 FF2AA3A43/ruk_wind_turbine_amplitude_modulation_dec_2013_v2_(1).pdf, RenewableUK (2013). Accessed 30 July 2018

  • Wolf WR, Lele SK (2012) Trailing-edge noise predictions using compressible large-Eddy simulation and acoustic analogy. AIAA J 50(11):2423–2434. https://doi.org/10.2514/1.J051638

    Article  Google Scholar 

  • Yauwenas Y, Zajamšek B, Reizes J, Timchenko V, Doolan CJ (2017) Numerical simulation of blade-passage noise. J Acoustical Soc Am 142(3):1575–1586. https://doi.org/10.1121/1.5003651

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Bertagnolio .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bertagnolio, F., Fischer, A. (2021). Wind Turbine Aerodynamic Noise Sources. In: Stoevesandt, B., Schepers, G., Fuglsang, P., Yuping, S. (eds) Handbook of Wind Energy Aerodynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-05455-7_70-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05455-7_70-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05455-7

  • Online ISBN: 978-3-030-05455-7

  • eBook Packages: Springer Reference EnergyReference Module Computer Science and Engineering

Publish with us

Policies and ethics