Skip to main content

Chemical Modification of Lignin and Its Environmental Application

  • Chapter
  • First Online:
Sustainable Polymer Composites and Nanocomposites

Abstract

Environmental application of lignin in the cleanup of wastewater has gained considerable attention in recent years due to the existence of phenyl, carboxyl and hydroxyl groups in lignin’s macromolecules, which accounts for many possible adsorption interactions between lignin and various pollutants. The design and development of modified lignin-based materials as cost-effective polymeric adsorbents is a hot topic in adsorption science. This article highlights the literature during the past decade in the use of modified lignin-based materials for dye, heavy metal, and some other pollutants removal from the aqueous phase. Lists of modified lignin-based adsorbents with their adsorption capacity/removal efficiency of various pollutants and the operating conditions have been collected and discussed. The interaction mechanism involved between the modified lignin and the pollutants in water has also been elucidated by interpreting the adsorption isothermal and kinetic models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abe A, Dusek K, Kobayashi S (2010) Biopolymers: lignin, proteins, bioactive nanocomposites. Springer, Berlin

    Google Scholar 

  2. Upton BM, Kasko AM (2016) Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem Rev 116:2275–2306

    Article  CAS  Google Scholar 

  3. Holladay JE, White JF, Bozell JJ, Johnson D (2007) Top value-added chemicals from biomass—volume II—results of screening for potential candidates from biorefinery lignin. In: Pacific Northwest National Laboratory (PNNL), Richland, WA (US), 2007, Medium: ED; Size: PDFN

    Google Scholar 

  4. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599

    Article  CAS  Google Scholar 

  5. Li Z, Zhang J, Qin L, Ge Y (2018) Enhancing antioxidant performance of lignin by enzymatic treatment with laccase. ACS Sustain Chem Eng 6:2591–2595

    Article  CAS  Google Scholar 

  6. Calvo-Flores FG, Dobado JA (2010) Lignin as renewable raw material. Chemsuschem 3:1227–1235

    Article  CAS  Google Scholar 

  7. Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2:1072–1092

    Article  CAS  Google Scholar 

  8. Rezakazemi M, Maghami M, Mohammadi T (2018) High loaded synthetic hazardous wastewater treatment using lab-scale submerged ceramic membrane bioreactor. Periodica Polytechnica Chem Eng 62:299–304

    Article  Google Scholar 

  9. Rezakazemi M, Khajeh A, Mesbah M (2018) Membrane filtration of wastewater from gas and oil production. Environ Chem Lett 16:367–388

    Article  CAS  Google Scholar 

  10. Rezakazemi M, Dashti A, Riasat Harami H, Hajilari N (2018) Fouling-resistant membranes for water reuse. Environ Chem Lett 1–49

    Google Scholar 

  11. Azimi A, Azari A, Rezakazemi M, Ansarpour M (2017) Removal of heavy metals from industrial wastewaters: a review. Chem Bio Eng Rev 4:37–59

    CAS  Google Scholar 

  12. Shirazian S, Rezakazemi M, Marjani A, Moradi S (2012) Hydrodynamics and mass transfer simulation of wastewater treatment in membrane reactors. Desalination 286:290–295

    Article  CAS  Google Scholar 

  13. Rezakazemi M, Shirazian S, Ashrafizadeh SN (2012) Simulation of ammonia removal from industrial wastewater streams by means of a hollow-fiber membrane contactor. Desalination 285:383–392

    Article  CAS  Google Scholar 

  14. Gupta VK (2009) Application of low-cost adsorbents for dye removal—a review. J Environ Manage 90:2313–2342

    Article  CAS  Google Scholar 

  15. Li Z, Xiao D, Ge Y, Koehler S (2015) Surface-functionalized porous lignin for fast and efficient lead removal from aqueous solution. ACS Appl Mater Interfaces 7:15000–15009

    Article  CAS  Google Scholar 

  16. Rezakazemi M, Zhang Z (2018) 2.29 desulfurization materials A2. In: Dincer I (ed) Comprehensive energy systems. Elsevier, Oxford, pp 944–979

    Google Scholar 

  17. Rezakazemi M, Sadrzadeh M, Matsuura T (2018) Thermally stable polymers for advanced high-performance gas separation membranes. Progr Energy Combust Sci 66:1–41

    Article  Google Scholar 

  18. Rezakazemi M, Marjani A, Shirazian S (2018) Organic solvent removal by pervaporation membrane technology: experimental and simulation. Environ Sci Poll Res

    Google Scholar 

  19. Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati MM, Ismail AF, Matsuura T (2014) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog Polym Sci 39:817–861

    Article  CAS  Google Scholar 

  20. Foroutan R, Esmaeili H, Abbasi M, Rezakazemi M, Mesbah M (2017) Adsorption behavior of Cu(II) and Co(II) using chemically modified marine algae. Environ Technol 1–9

    Google Scholar 

  21. Ge YY, Cui XM, Liao CL, Li ZL (2017) Facile fabrication of green geopolymer/alginate hybrid spheres for efficient removal of Cu(II) in water: batch and column studies. Chem Eng J 311:126–134

    Article  CAS  Google Scholar 

  22. Saleh TA, Gupta VK (2014) Processing methods, characteristics and adsorption behavior of tire derived carbons: a review. Adv Colloid Interfac 211:93–101

    Article  CAS  Google Scholar 

  23. Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2010) Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater 177:70–80

    Article  CAS  Google Scholar 

  24. Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technol 98:2243–2257

    Article  CAS  Google Scholar 

  25. Deng S, Ting Y-P (2005) Characterization of PEI-modified biomass and biosorption of Cu(II), Pb(II) and Ni(II). Water Res 39:2167–2177

    Article  CAS  Google Scholar 

  26. Ge YY, Qin L, Li ZL (2016) Lignin microspheres: an effective and recyclable natural polymer-based adsorbent for lead ion removal. Mater Des 95:141–147

    Article  CAS  Google Scholar 

  27. Ge Y, Wu S, Qin L, Li Z (2016) Conversion of organosolv lignin into an efficient mercury ion adsorbent by a microwave-assisted method. J Taiwan Inst Chem Eng 63:500–505

    Article  CAS  Google Scholar 

  28. Wawrzkiewicz M, Bartczak P, Jesionowski T (2017) Enhanced removal of hazardous dye form aqueous solutions and real textile wastewater using bifunctional chitin/lignin biosorbent. Int J Biol Macromol 99:754–764

    Article  CAS  Google Scholar 

  29. Ge Y, Li Z, Kong Y, Song Q, Wang K (2014) Heavy metal ions retention by bi-functionalized lignin: synthesis, applications, and adsorption mechanisms. J Ind Eng Chem 20:4429–4436

    Article  CAS  Google Scholar 

  30. Ge Y, Li Z (2018) Application of lignin and its derivatives in adsorption of heavy metal ions in water: a review. ACS Sustain Chem Eng 6:7181–7192

    Article  CAS  Google Scholar 

  31. Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39:1266–1290

    Article  CAS  Google Scholar 

  32. Nair V, Panigrahy A, Vinu R (2014) Development of novel chitosan–lignin composites for adsorption of dyes and metal ions from wastewater. Chem Eng J 254:491–502

    Article  CAS  Google Scholar 

  33. Albadarin AB, Collins MN, Naushad M, Shirazian S, Walker G, Mangwandi C (2017) Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue. Chem Eng J 307:264–272

    Article  CAS  Google Scholar 

  34. Lou T, Cui G, Xun J, Wang X, Feng N, Zhang J (2018) Synthesis of a terpolymer based on chitosan and lignin as an effective flocculant for dye removal. Coll Surf A 537:149–154

    Article  CAS  Google Scholar 

  35. Li YL, Wu M, Wang B, Wu YY, Ma MG, Zhang XM (2016) Synthesis of magnetic lignin-based hollow microspheres: a highly adsorptive and reusable adsorbent derived from renewable resources. ACS Sustain Chem Eng 4:5523–5532

    Article  CAS  Google Scholar 

  36. Couch RL, Price JT, Fatehi P (2016) Production of flocculant from thermomechanical pulping lignin via nitric acid treatment. ACS Sustain Chem Eng 4:1954–1962

    Article  CAS  Google Scholar 

  37. Xu WJ, Zhang WS, Li Y, Li W (2016) Synthesis of acrylic-lignosulfonate resin for crystal violet removal from aqueous solution. Korean J Chem Eng 33:2659–2667

    Article  CAS  Google Scholar 

  38. Wang Y, Xiong Y, Wang J, Zhang X (2017) Ultrasonic-assisted fabrication of montmorillonite-lignin hybrid hydrogel: highly efficient swelling behaviors and super-sorbent for dye removal from wastewater. Coll Surf A 520:903–913

    Article  CAS  Google Scholar 

  39. Yu C, Wang F, Zhang C, Fu S, Lucia LA (2016) The synthesis and absorption dynamics of a lignin-based hydrogel for remediation of cationic dye-contaminated effluent. React Funct Polym 106:137–142

    Article  CAS  Google Scholar 

  40. Kumari S, Chauhan GS, Monga S, Kaushik A, Ahn J-H (2016) New lignin-based polyurethane foam for wastewater treatment. RSC Adv 6:77768–77776

    Article  CAS  Google Scholar 

  41. Feng Q, Cheng H, Chen F, Zhou X, Wang P, Xie Y (2016) Investigation of cationic dye adsorption from water onto acetic acid lignin. J Wood Chem Technol 36:173–181

    Article  CAS  Google Scholar 

  42. Tang Y, Hu T, Zeng Y, Zhou Q, Peng Y (2015) Effective adsorption of cationic dyes by lignin sulfonate polymer based on simple emulsion polymerization: isotherm and kinetic studies. RSC Adv 5:3757–3766

    Article  CAS  Google Scholar 

  43. Tang Y, Zeng Y, Hu T, Zhou Q, Peng Y (2016) Preparation of lignin sulfonate-based mesoporous materials for adsorbing malachite green from aqueous solution. J Environ Chem Eng 4:2900–2910

    Article  CAS  Google Scholar 

  44. Song X, Chen F, Liu S (2016) A lignin-containing hemicellulose-based hydrogel and its adsorption behavior. BioResources 11:6378–6392

    CAS  Google Scholar 

  45. Luo H, Ren S, Ma Y, Fang G, Jiang G (2015) Preparation and properties of kraft lignin-N-isopropyl acrylamide hydrogel. BioResources 10:3507–3519

    CAS  Google Scholar 

  46. Adebayo MA, Prola LDT, Lima EC, Puchana-Rosero MJ, Cataluña R, Saucier C, Umpierres CS, Vaghetti JCP, da Silva LG, Ruggiero R (2014) Adsorption of Procion Blue MX-R dye from aqueous solutions by lignin chemically modified with aluminium and manganese. J Haz Mater 268:43–50

    Article  CAS  Google Scholar 

  47. da Silva LG, Ruggiero R, Gontijo PdM, Pinto RB, Royer B, Lima EC, Fernandes THM, Calvete T (2011) Adsorption of Brilliant Red 2BE dye from water solutions by a chemically modified sugarcane bagasse lignin. Chem Eng J 168:620–628

    Google Scholar 

  48. Guo K, Gao B, Li R, Wang W, Yue Q, Wang Y (2018) Flocculation performance of lignin-based flocculant during reactive blue dye removal: comparison with commercial flocculants. Environ Sci Pollut R 25:2083–2095

    Article  CAS  Google Scholar 

  49. Ge Y, Song Q, Li Z (2015) A Mannich base biosorbent derived from alkaline lignin for lead removal from aqueous solution. J Ind Eng Chem 23:228–234

    Article  CAS  Google Scholar 

  50. Li Z, Xiao D, Kong Y, Ge Y (2015) Enhancing lead adsorption capacity by controlling the chain length of alkyl amine grafted lignin. BioResources 10:2425–2432

    CAS  Google Scholar 

  51. Huang W-X, Zhang Y-H, Ge Y-Y, Qin L, Li Z-L (2017) Soft nitrogen and sulfur incorporated into enzymatic hydrolysis lignin as an environmentally friendly antioxidant and mercury adsorbent. BioResources 12:7341–7348

    Article  CAS  Google Scholar 

  52. Quintana GC, Rocha GJM, Goncalves AR, Velasquez JA (2008) Evaluation of heavy metal removal by oxidised lignins in acid media from various sources. BioResources 3:1092–1102

    CAS  Google Scholar 

  53. Peternele WS, Winkler-Hechenleitner AA, Pineda EAG (1999) Adsorption of Cd(II) and Pb(II) onto functionalized formic lignin from sugar cane bagasse. Bioresource Technol 68:95–100

    Article  CAS  Google Scholar 

  54. Dizhbite T, Jashina L, Dobele G, Andersone A, Evtuguin D, Bikovens O, Telysheva G (2013) Polyoxometalate (POM)-aided modification of lignin from wheat straw biorefinery. Holzforschung 67:539–547

    Article  CAS  Google Scholar 

  55. Li Z, Pang Y, Ge Y, Qiu X (2011) Evaluation of steric repulsive force in the aqueous dispersion system of dimethomorph powder with lignosulfonates via X-ray photoelectron spectroscopy. J Phys Chem C 115:24865–24870

    Article  CAS  Google Scholar 

  56. Li Z, Ge Y (2011) Extraction of lignin from sugar cane bagasse and its modification into a high performance dispersant for pesticide formulations. J Brazil Chem Soc 22:1866–1871

    Article  CAS  Google Scholar 

  57. Xu F, Zhu TT, Rao QQ, Shui SW, Li WW, He HB, Yao RS (2017) Fabrication of mesoporous lignin-based biosorbent from rice straw and its application for heavy-metal-ion removal. J Environ Sci 53:132–140

    Article  Google Scholar 

  58. Ge Y, Xiao D, Li Z, Cui X (2014) Dithiocarbamate functionalized lignin for efficient removal of metallic ions and the usage of the metal-loaded bio-sorbents as potential free radical scavengers. J Mater Chem A 2:2136–2145

    Article  CAS  Google Scholar 

  59. Li Z, Kong Y, Ge Y (2015) Synthesis of porous lignin xanthate resin for Pb2 + removal from aqueous solution. Chem Eng J 270:229–234

    Article  CAS  Google Scholar 

  60. Liang F-B, Song Y-L, Huang C-P, Zhang J, Chen B-H (2013) Adsorption of hexavalent chromium on a lignin-based resin: equilibrium, thermodynamics, and kinetics. J Environ Chem Eng 1:1301–1308

    Article  CAS  Google Scholar 

  61. Parajuli D, Inoue K, Ohto K, Oshima T, Murota A, Funaoka M, Makino K (2005) Adsorption of heavy metals on crosslinked lignocatechol: a modified lignin gel. React Funct Polym 62:129–139

    Article  CAS  Google Scholar 

  62. Qin L, Ge Y, Deng B, Li Z (2017) Poly(ethylene imine) anchored lignin composite for heavy metals capturing in water. J Taiwan Inst Chem Eng 71:84–90

    Article  CAS  Google Scholar 

  63. Klapiszewski L, Siwinska-Stefanska K, Kolodynska D (2017) Preparation and characterization of novel TiO2/lignin and TiO2-SiO2/lignin hybrids and their use as functional biosorbents for Pb(II). Chem Eng J 314:169–181

    Article  CAS  Google Scholar 

  64. Li Z, Ge Y, Wan L (2015) Fabrication of a green porous lignin-based sphere for the removal of lead ions from aqueous media. J Haz Mater 285:77–83

    Article  CAS  Google Scholar 

  65. Li Z, Chen J, Ge Y (2017) Removal of lead ion and oil droplet from aqueous solution by lignin-grafted carbon nanotubes. Chem Eng J 308:809–817

    Article  CAS  Google Scholar 

  66. Klapiszewski L, Bartczak P, Wysokowski M, Jankowska M, Kabat K, Jesionowski T (2015) Silica conjugated with kraft lignin and its use as a novel ‘green’ sorbent for hazardous metal ions removal. Chem Eng J 260:684–693

    Article  CAS  Google Scholar 

  67. Yao Q, Xie J, Liu J, Kang H, Liu Y (2014) Adsorption of lead ions using a modified lignin hydrogel. J Polym Res 21:465

    Article  Google Scholar 

  68. Peternele WS, Winkler-Hechenleitner AA, Gómez Pineda EA (1999) Adsorption of Cd(II) and Pb(II) onto functionalized formic lignin from sugar cane bagasse. Bioresour Technol 68:95–100

    Article  CAS  Google Scholar 

  69. Cui J, Sun H, Wang X, Sun J, Niu M, Wen Z (2015) Preparation of siliceous lignin microparticles from wheat husks with a facile method. Ind Crop Prod 74:689–696

    Article  CAS  Google Scholar 

  70. Saad R, Radovic-Hrapovic Z, Ahvazi B, Thiboutot S, Ampleman G, Hawari J (2012) Sorption of 2,4-dinitroanisole (DNAN) on lignin. J Environ Sci 24:808–813

    Article  CAS  Google Scholar 

  71. Chen GF, Liu MH (2012) Adsorption of L-lysine from aqueous solution by spherical lignin beads: kinetics and equilibrium studies. BioResources 7:298–314

    Article  CAS  Google Scholar 

  72. Żółtowska-Aksamitowska S, Bartczak P, Zembrzuska J, Jesionowski T (2018) Removal of hazardous non-steroidal anti-inflammatory drugs from aqueous solutions by biosorbent based on chitin and lignin. Sci Total Environ 612:1223–1233

    Article  Google Scholar 

  73. Kozhevnikov AY, Ul’yanovskaya SL, Semushina MP, Pokryshkin SA, Ladesov AV, Pikovskoi II, Kosyakov DS (2017) Modification of sulfate lignin with sodium periodate to obtain sorbent of 1,1-dimethylhydrazine. Russ J Appl Chem + 90:516–521

    Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (No. 21264002, 21464002), and Guangxi Natural Science Foundation (No. 2015GXNSFBA139215, 2016GXNSFAA380329) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhili Li or Yuanyuan Ge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Z., Ge, Y., Zhang, J., Xiao, D., Wu, Z. (2019). Chemical Modification of Lignin and Its Environmental Application. In: Inamuddin, Thomas, S., Kumar Mishra, R., Asiri, A. (eds) Sustainable Polymer Composites and Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-05399-4_45

Download citation

Publish with us

Policies and ethics