Skip to main content

Unsuccessful External Search: Using Neuroimaging to Understand Fruitless Periods of Design Ideation Involving Inspirational Stimuli

  • Conference paper
  • First Online:
Design Computing and Cognition '18 (DCC 2018)

Abstract

This paper uses neuroimaging to provide insight into specific cognitive processes involved in design conceptualization with and without the support of inspirational stimuli. In particular, this work focuses on neural activity during unsuccessful search for a design solution. Twenty-one participants completed a brainstorming task while undergoing functional magnetic resonance imaging (fMRI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It should be noted that this method of ROI mask generation and sampling is similar to the analyses conducted in work by Goucher-Lambert et al. using the external neuroimaging database—Neurosynth. However, here the ROI mask was created based on a specialized analysis of the empirical data [56].

References

  1. Findler NV (1981) Analogical reasoning in design processes. Des Stud 2(1):45–51. https://doi.org/10.1016/0142-694X(81)90029-6

    Article  Google Scholar 

  2. Chan J, Fu K, Schunn C, Cagan J, Wood K, Kotovsky K (2011) On the benefits and pitfalls of analogies for innovative design: ideation performance based on analogical distance, commonness, and modality of examples. J Mech Des 133(8):81004. https://doi.org/10.1115/1.4004396

    Article  Google Scholar 

  3. Dorst K, Royakkers L (2006) The design analogy: a model for moral problem solving. Des Stud 27(6):633–656. https://doi.org/10.1016/j.destud.2006.05.002

    Article  Google Scholar 

  4. Moreno DP, Hernández AA, Yang MC, Otto KN, Hölttä-Otto K, Linsey JS, … Linden A (2014) Fundamental studies in design-by-analogy: a focus on domain-knowledge experts and applications to transactional design problems. Des Stud 35(3):232–272. https://doi.org/10.1016/j.destud.2013.11.002

    Article  Google Scholar 

  5. Fu K, Chan J, Cagan J, Kotovsky K, Schunn C, Wood K (2013) The meaning of “near” and “far”: the impact of structuring design databases and the effect of distance of analogy on design output. J Mech Des 135(2):21007. https://doi.org/10.1115/1.4023158

    Article  Google Scholar 

  6. Linsey JS, Wood KL, Markman AB (2008) Modality and representation in analogy. AI EDAM 22:85–100. https://doi.org/10.1017/S0890060408000061

    Article  Google Scholar 

  7. Murphy J, Fu K, Otto K, Yang M, Jensen D, Wood K (2014) Function based design-by-analogy: a functional vector approach to analogical search. J Mech Des 136(10):1–16. https://doi.org/10.1115/1.4028093

    Article  Google Scholar 

  8. Tseng I, Moss J, Cagan J, Kotovsky K (2008) The role of timing and analogical similarity in the stimulation of idea generation in design. Des Stud 29(3):203–221. https://doi.org/10.1016/j.destud.2008.01.003

    Article  Google Scholar 

  9. Sternberg RJ (1977) Component processes in analogical reasoning. Psychol Rev 84(4):353–378. https://doi.org/10.1037/0033-295X.84.4.353

    Article  Google Scholar 

  10. Nguyen TA, Zeng Y (2010) Analysis of design activities using EEG signals. In: Volume 5: 22nd international conference on design theory and methodology; special conference on mechanical vibration and noise, pp 277–286. https://doi.org/10.1115/detc2010-28477

  11. Hu W-L, Booth JW, Reid T (2017) The relationship between design outcomes and mental states during ideation. J Mech Des 1–16. https://doi.org/10.1115/1.4036131

    Article  Google Scholar 

  12. Alexiou K, Zamenopoulos T, Johnson JH, Gilbert SJ (2009) Exploring the neurological basis of design cognition using brain imaging: some preliminary results. Des Stud 30(6):623–647. https://doi.org/10.1016/j.destud.2009.05.002

    Article  Google Scholar 

  13. Goucher-Lambert K, Moss J, Cagan J (2017) Inside the mind: using neuroimaging to understand moral product preference judgments involving sustainability (IDETC2016-59406). ASME J Mech Des 139(4):1–12. https://doi.org/10.1115/1.4035859

    Article  Google Scholar 

  14. Sylcott B, Cagan J, Tabibnia G (2013) Understanding consumer tradeoffs between form and function through metaconjoint and cognitive neuroscience analyses. J Mech Des 135(10):101002. https://doi.org/10.1115/1.4024975

    Article  Google Scholar 

  15. Goucher-Lambert K, Cagan J (2015) The impact of sustainability on consumer preference judgments of product attributes. J Mech Des 137(8):1–11. https://doi.org/10.1115/1.4030271

    Article  Google Scholar 

  16. Gilbert SJ, Zamenopoulos T, Alexiou K, Johnson JH (2010) Involvement of right dorsolateral prefrontal cortex in ill-structured design cognition: an fMRI study. Brain Res 1312:79–88. https://doi.org/10.1016/j.brainres.2009.11.045

    Article  Google Scholar 

  17. Saggar M, Quintin E-M, Bott NT, Kienitz E, Chien Y-H, Hong DW-C, … Reiss AL (2016) Changes in brain activation associated with spontaneous improvization and figural creativity after design-thinking-based training: a longitudinal fMRI Study cerebral cortex advance access. Cerebral Cortex 1–11. https://doi.org/10.1093/cercor/bhw171

  18. Saggar M, Quintin E-M, Kienitz E, Bott NT, Sun Z, Hong W-C, … Reiss AL (2015) Pictionary-based fMRI paradigm to study the neural correlates of spontaneous improvisation and figural creativity. Sci Rep 5(5):10894. https://doi.org/10.1038/srep10894

  19. Gentner D (1983) Structure-mapping: a theoretical framework for analogy. Cogn Sci 7(2):155–170. https://doi.org/10.1016/S0364-0213(83)80009-3

    Article  Google Scholar 

  20. Linsey JS, Markman AB, Wood KL (2008) WordTrees: a method for design-by-analogy. In: Proceedings of the 2008 ASEE Annual Conference

    Google Scholar 

  21. Stern PC (2000) Toward a coherent theory of environmentally significant behavior. J Soc Issues 56(3):407–424. https://doi.org/10.1111/0022-4537.00175

    Article  Google Scholar 

  22. Damle A, Smith PJ (2009) Biasing cognitive processes during design: the effects of color. Des Stud 30(5):521–540. https://doi.org/10.1016/j.destud.2009.01.001

    Article  Google Scholar 

  23. Cross N (2004) Expertise in design: an overview. Des Stud 25(5):427–441. https://doi.org/10.1016/j.destud.2004.06.002

    Article  Google Scholar 

  24. Visser W (1996) Two functions of analogical reasoning in design: a cognitive-psychology approach. Des Stud 17(4 Special Issue):417–434. https://doi.org/10.1016/s0142-694x(96)00020-8

    Article  Google Scholar 

  25. Wilson JO, Rosen D, Nelson BA, Yen J (2010) The effects of biological examples in idea generation. Des Stud 31(2):169–186. https://doi.org/10.1016/j.destud.2009.10.003

    Article  Google Scholar 

  26. Jansson DG, Smith SM (1991) Design fixation. Des Stud 12(1):3–11. https://doi.org/10.1016/0142-694X(91)90003-F

    Article  Google Scholar 

  27. Krawczyk DC, McClelland MM, Donovan CM, Tillman GD, Maguire MJ (2010) An fMRI investigation of cognitive stages in reasoning by analogy. Brain Res 1342:63–73. https://doi.org/10.1016/j.brainres.2010.04.039

    Article  Google Scholar 

  28. Cho S, Holyoak KJ, Cannon TD (2007) Analogical reasoning in working memory: resources shared among relational integration, interference resolution, and maintenance. Memory Cogn 35(6):1445–1455. https://doi.org/10.3758/BF03193614

    Article  Google Scholar 

  29. Green AE, Cohen MS, Raab HA, Yedibalian CG, Gray JR (2015) Frontopolar activity and connectivity support dynamic conscious augmentation of creative state. Hum Brain Mapp 36(3):923–934. https://doi.org/10.1002/hbm.22676

    Article  Google Scholar 

  30. Green AE, Fugelsang JA, Kraemer DJM, Shamosh NA, Dunbar KN (2006) Frontopolar cortex mediates abstract integration in analogy. Brain Res 1096(1):125–137. https://doi.org/10.1016/j.brainres.2006.04.024

    Article  Google Scholar 

  31. Gonen-Yaacovi G, de Souza LC, Levy R, Urbanski M, Josse G, Volle E (2013) Rostral and caudal prefrontal contribution to creativity: a meta-analysis of functional imaging data. Front Human Neurosci 7(8):465. https://doi.org/10.3389/fnhum.2013.00465

    Article  Google Scholar 

  32. Kowatari Y, Hee Lee S, Yamamura H, Nagamori Y, Levy P, Yamane S, Yamamoto M (2009) Neural networks involved in artistic creativity. Hum Brain Mapp 30(5):1678–1690. https://doi.org/10.1002/hbm.20633

    Article  Google Scholar 

  33. Westphal AJ, Reggente N, Ito KL, Rissman J (2015) Shared and distinct contributions of rostrolateral prefrontal cortex to analogical reasoning and episodic memory retrieval. Hum Brain Mapp 912:896–912. https://doi.org/10.1002/hbm.23074

    Article  Google Scholar 

  34. Wharton CM, Grafman J, Flitman SS, Hansen EK, Brauner J, Marks A, Honda M (2000) Toward neuroanatomical models of analogy: a positron emission tomography study of analogical mapping. Cogn Psychol 40(3):173–97. https://doi.org/10.1006/cogp.1999.0726

    Article  Google Scholar 

  35. Goucher-Lambert K, Cagan J (2017) Using crowdsourcing to provide analogies for designer ideation in a cognitive study. In: International conference on engineering design. Vancouver, B.C., pp 1–11

    Google Scholar 

  36. Linsey JS, Viswanathan VK (2014) Overcoming cognitive challenges in bioinspired design and analogy. Biologically Inspired Des 221–244

    Google Scholar 

  37. Cardoso C, Badke-Schaub P (2011) The influence of different pictorial representations during idea generation. J Creat Behav 45(2):130–146. https://doi.org/10.1002/j.2162-6057.2011.tb01092.x

    Article  Google Scholar 

  38. Toh CA, Miller SR (2014) The impact of example modality and physical interactions on design creativity. J Mech Des (Trans ASME) 136(9):[np]. https://doi.org/10.1115/1.4027639

    Article  Google Scholar 

  39. Miller SR, Bailey BP, Kirlik A (2014) Exploring the utility of Bayesian truth serum for assessing design knowledge. Human-Comput Interact 29(5–6):487–515. https://doi.org/10.1080/07370024.2013.870393

    Article  Google Scholar 

  40. Linsey JS, Markman AB, Wood KL (2012) Design by analogy: a study of the WordTree method for problem re-representation. J Mech Des 134(4):041009. https://doi.org/10.1115/1.4006145

    Article  Google Scholar 

  41. Goldschmidt G, Smolkov M (2006) Variances in the impact of visual stimuli on design problem solving performance. Des Stud 27(5):549–569. https://doi.org/10.1016/j.destud.2006.01.002

    Article  Google Scholar 

  42. Purcell AT, Williams P, Gero JS, Colbron B (1993) Fixation effects: do they exist in design problem solving? Environ Plan 20(3):333–345. https://doi.org/10.1068/b200333

    Article  Google Scholar 

  43. Viswanathan VK, Linsey JS (2013) Design fixation and its mitigation: a study on the role of expertise. J Mech Des 135:51008. https://doi.org/10.1115/1.4024123

    Article  Google Scholar 

  44. Schneider W, Eschman A, Zuccolotto A (2002) E-Prime reference guide. Psychol Softw Tools 3(1):1. https://doi.org/10.1186/1756-0381-3-1

    Article  Google Scholar 

  45. Chein JM, Schneider W (2003) Designing effective fMRI experiments. Handb Neuropsychol, 2nd edn 9:299–325

    Google Scholar 

  46. Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res Int J 29(3):162–173

    Article  Google Scholar 

  47. Gorgolewski K, Burns CD, Madison C, Clark D, Halchenko YO, Waskom ML, Ghosh SS (2011) Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python. Front Neuroinformatics 5:13. https://doi.org/10.3389/fninf.2011.00013

    Article  Google Scholar 

  48. Petersen SE, Dubis JW (2012) The mixed block/event-related design. NeuroImage 62(2):1177–1184. https://doi.org/10.1016/j.neuroimage.2011.09.084

    Article  Google Scholar 

  49. Goucher-Lambert K, Moss J, Cagan J (2017) An fMRI investigation of near and far analogical reasoning during design ideation. Des Stud (submitted)

    Google Scholar 

  50. Moss J, Kotovsky K, Cagan J (2007) The influence of open goals on the acquisition of problem-relevant information. J Exp Psychol Learn Mem Cogn 33(5):876–891. https://doi.org/10.1037/0278-7393.33.5.876

    Article  Google Scholar 

  51. Kounios J, Frymiare JL, Bowden EM, Fleck JI, Subramaniam K, Parrish TB, Jung-beeman M (2006) Subsequent solution by sudden insight. Psychol Sci 17(10):882–890

    Article  Google Scholar 

  52. Leech R, Sharp DJ (2014) The role of the posterior cingulate cortex in cognition and disease. Brain 137(1):12–32. https://doi.org/10.1093/brain/awt162

    Article  Google Scholar 

  53. Burgess PW, Dumontheil I, Gilbert SJ (2007) The gateway hypothesis of rostral prefrontal cortex (area 10) function. Trends Cogn Sci 11(7):290–298. https://doi.org/10.1016/j.tics.2007.05.004

    Article  Google Scholar 

  54. Moss J, Kotovsky K, Cagan J (2011) The effect of incidental hints when problems are suspended before, during, or after an impasse. J Exp Psychol Learn Mem Cogn 37(1):140–148. https://doi.org/10.1037/a0021206

    Article  Google Scholar 

  55. Vasconcelos LA, Crilly N (2016) Inspiration and fixation: questions, methods, findings, and challenges. Des Stud 42:1–32. https://doi.org/10.1016/j.destud.2015.11.001

    Article  Google Scholar 

  56. Goucher-Lambert K, Moss J, Cagan J (2016) A meta-analytic approach for uncovering neural activation patterns of sustainable product preference decisions. In: Design computing and cognition conference 2016, pp 1–20

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the staff at the Carnegie Mellon University Scientific Imaging and Brain Research Center for their assistance with fMRI data acquisition. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under grant DGE125252, the National Science Foundation under grant CMMI1233864, and the Air Force Office of Scientific Research under grant #FA9550-16-1-0049.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kosa Goucher-Lambert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goucher-Lambert, K., Moss, J., Cagan, J. (2019). Unsuccessful External Search: Using Neuroimaging to Understand Fruitless Periods of Design Ideation Involving Inspirational Stimuli. In: Gero, J. (eds) Design Computing and Cognition '18. DCC 2018. Springer, Cham. https://doi.org/10.1007/978-3-030-05363-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05363-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05362-8

  • Online ISBN: 978-3-030-05363-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics