Skip to main content

Clinical and Pathological Features of Selected Human Retinal Degenerative Diseases

  • Chapter
  • First Online:
Cell-Based Therapy for Degenerative Retinal Disease

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

The following chapter provides an overview of several important retinal degenerative conditions, with a focus on phenotypic description and correlation with the genetic basis as currently understood. The conditions selected for this chapter have been subdivided into those associated with either a generalized retinal degeneration, such as retinitis pigmentosa, Leber congenital amaurosis, and choroideremia, or those causing degeneration primarily affecting the macula, including age-related macular degeneration, ABCA4 retinal dystrophy, and Best disease. For each condition, coverage is also given to important investigative findings with optical coherence tomography, fundus autofluorescence, retinal angiography, and electrodiagnostic testing in addition to a description of their characteristic clinical features. It is hoped this chapter will enhance the reader’s understanding of the clinical aspects of these conditions and provide a practical link to current research in the field of cell-based therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gregory-Evans KPM, Weleber RG. In: Ryan SJ, editor. Retinitis pigmentosa and allied disorders. 5th ed. London: Elsevier; 2013.

    Google Scholar 

  2. Hu DN. Genetic aspects of retinitis pigmentosa in China. Am J Med Genet. 1982;12(1):51–6.

    Article  CAS  PubMed  Google Scholar 

  3. Merin S, Auerbach E. Retinitis pigmentosa. Surv Ophthalmol. 1976;20(5):303–46.

    Article  CAS  PubMed  Google Scholar 

  4. Bunker CH, Berson EL, Bromley WC, Hayes RP, Roderick TH. Prevalence of retinitis pigmentosa in Maine. Am J Ophthalmol. 1984;97(3):357–65.

    Article  CAS  PubMed  Google Scholar 

  5. Ammann F, Klein D, Franceschetti A. Genetic and epidemiological investigations on pigmentary degeneration of the retina and allied disorders in Switzerland. J Neurol Sci. 1965;2(2):183–96.

    Article  CAS  PubMed  Google Scholar 

  6. Ffytche TJ. Cystoid maculopathy in retinitis pigmentosa. Trans Ophthalmol Soc U K. 1972;92:265–83.

    CAS  PubMed  Google Scholar 

  7. Hansen RI, Friedman AH, Gartner S, Henkind P. The association of retinitis pigmentosa with preretinal macular gliosis. Br J Ophthalmol. 1977;61(9):597–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hamel C. Retinitis pigmentosa. Orphanet J Rare Dis. 2006;1:40.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jay M. On the heredity of retinitis pigmentosa. Br J Ophthalmol. 1982;66(7):405–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. North V, Gelman R, Tsang SH. Juvenile-onset macular degeneration and allied disorders. Dev Ophthalmol. 2014;53:44–52.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rivolta C, Sharon D, DeAngelis MM, Dryja TP. Retinitis pigmentosa and allied diseases: numerous diseases, genes, and inheritance patterns. Hum Mol Genet. 2002;11(10):1219–27.

    Article  CAS  PubMed  Google Scholar 

  12. Karpe G. The basis of clinical electroretinography. Acta Ophthalmol. 1945;23(Suppl):1–114.

    Google Scholar 

  13. Berson EL, Sandberg MA, Rosner B, Birch DG, Hanson AH. Natural course of retinitis pigmentosa over a three-year interval. Am J Ophthalmol. 1985;99(3):240–51.

    Article  CAS  PubMed  Google Scholar 

  14. von Ruckmann A, Fitzke FW, Bird AC. Distribution of fundus autofluorescence with a scanning laser ophthalmoscope. Br J Ophthalmol. 1995;79(5):407–12.

    Article  Google Scholar 

  15. Robson AG, Michaelides M, Saihan Z, Bird AC, Webster AR, Moore AT, et al. Functional characteristics of patients with retinal dystrophy that manifest abnormal parafoveal annuli of high density fundus autofluorescence; a review and update. Doc Ophthalmol. 2008;116(2):79–89.

    Article  PubMed  Google Scholar 

  16. Fleckenstein M, Charbel Issa P, Fuchs HA, Finger RP, Helb HM, Scholl HP, et al. Discrete arcs of increased fundus autofluorescence in retinal dystrophies and functional correlate on microperimetry. Eye (Lond). 2009;23(3):567–75.

    Article  CAS  Google Scholar 

  17. Robson AG, Tufail A, Fitzke F, Bird AC, Moore AT, Holder GE, et al. Serial imaging and structure-function correlates of high-density rings of fundus autofluorescence in retinitis pigmentosa. Retina. 2011;31(8):1670–9.

    Article  PubMed  Google Scholar 

  18. Lima LH, Cella W, Greenstein VC, Wang NK, Busuioc M, Smith RT, et al. Structural assessment of hyperautofluorescent ring in patients with retinitis pigmentosa. Retina. 2009;29(7):1025–31.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Newsome DA. Retinal fluorescein leakage in retinitis pigmentosa. Am J Ophthalmol. 1986;101(3):354–60.

    Article  CAS  PubMed  Google Scholar 

  20. Lupo S, Grenga PL, Vingolo EM. Fourier-domain optical coherence tomography and microperimetry findings in retinitis pigmentosa. Am J Ophthalmol. 2011;151(1):106–11.

    Article  PubMed  Google Scholar 

  21. Wolsley CJ, Silvestri G, O’Neill J, Saunders KJ, Anderson RS. The association between multifocal electroretinograms and OCT retinal thickness in retinitis pigmentosa patients with good visual acuity. Eye (Lond). 2009;23(7):1524–31.

    Article  CAS  Google Scholar 

  22. Hajali M, Fishman GA, Anderson RJ. The prevalence of cystoid macular oedema in retinitis pigmentosa patients determined by optical coherence tomography. Br J Ophthalmol. 2008;92(8):1065–8.

    Article  CAS  PubMed  Google Scholar 

  23. de Paula Freitas B, de Oliveira Dias JR, Prazeres J, et al. Ocular findings in infants with microcephaly associated with presumed Zika virus congenital infection in Salvador, Brazil. JAMA Ophthalmol. 2016; https://doi.org/10.1001/jamaophthalmol.2016.0267.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Koenekoop R. Leber congental amaurosis. In: Heckenlively JR, Arden GB, editors. Principles and practice of clinical electrophysiology of vision. 2nd ed. Cambridge: MIT Press; 2006. p. 745.

    Google Scholar 

  25. Leber T. Uber retinitis pigmentosa und angeborene amaurose. Graefes Arch Klin Ophthalmol. 1869:1–25.

    Google Scholar 

  26. Franceschetti A, Dieterlé P. Rubeola pendant la grossesse et cataracte congenitale chez l’enfant, accompagnee du phenomene digito-oculaire. Ophthalmologica. 1947;114:332–9.

    Article  Google Scholar 

  27. Schuil J, Meire FM, Delleman JW. Mental retardation in amaurosis congenita of Leber. Neuropediatrics. 1998;29(6):294–7.

    Article  CAS  PubMed  Google Scholar 

  28. Casteels I, Spileers W, Demaerel P, Casaer P, De Cock P, Dralands L, et al. Leber congenital amaurosis—differential diagnosis, ophthalmological and neuroradiological report of 18 patients. Neuropediatrics. 1996;27(4):189–93.

    Article  CAS  PubMed  Google Scholar 

  29. Scholl HP, Chong NH, Robson AG, Holder GE, Moore AT, Bird AC. Fundus autofluorescence in patients with leber congenital amaurosis. Invest Ophthalmol Vis Sci. 2004;45(8):2747–52.

    Article  PubMed  Google Scholar 

  30. Bowne SJ, Sullivan LS, Mortimer SE, Hedstrom L, Zhu J, Spellicy CJ, et al. Spectrum and frequency of mutations in IMPDH1 associated with autosomal dominant retinitis pigmentosa and leber congenital amaurosis. Invest Ophthalmol Vis Sci. 2006;47(1):34–42.

    Article  PubMed  Google Scholar 

  31. Nichols LL 2nd, Alur RP, Boobalan E, Sergeev YV, Caruso RC, Stone EM, et al. Two novel CRX mutant proteins causing autosomal dominant Leber congenital amaurosis interact differently with NRL. Hum Mutat. 2010;31(6):E1472–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Edwards WC, Macdonald R Jr, Price WD. Congenital amaurosis of retinal origin (Leber). Am J Ophthalmol. 1971;72(4):724–8.

    Article  CAS  PubMed  Google Scholar 

  33. Schroeder R, Mets MB, Maumenee IH. Leber’s congenital amaurosis. Retrospective review of 43 cases and a new fundus finding in two cases. Arch Ophthalmol. 1987;105(3):356–9.

    Article  CAS  PubMed  Google Scholar 

  34. Flanders M, Lapointe ML, Brownstein S, Little JM. Keratoconus and Leber’s congenital amaurosis: a clinicopathological correlation. Can J Ophthalmol. 1984;19(7):310–4.

    CAS  PubMed  Google Scholar 

  35. Lorenz B, Wabbels B, Wegscheider E, Hamel CP, Drexler W, Preising MN. Lack of fundus autofluorescence to 488 nanometers from childhood on in patients with early-onset severe retinal dystrophy associated with mutations in RPE65. Ophthalmology. 2004;111(8):1585–94.

    Article  PubMed  Google Scholar 

  36. Franceschetti A, Dieterlé P. Importance diagnostique et pronostique de l’electroretinopgramme dans le degenerescences tapeto-retiniennes avec retrecissement du champ visuel et hemeralopie. Confinia Neurol. 1954;114:184–6.

    Article  Google Scholar 

  37. Foxman SG, Heckenlively JR, Bateman JB, Wirtschafter JD. Classification of congenital and early onset retinitis pigmentosa. Arch Ophthalmol. 1985;103(10):1502–6.

    Article  CAS  PubMed  Google Scholar 

  38. Koenekoop RK. An overview of Leber congenital amaurosis: a model to understand human retinal development. Surv Ophthalmol. 2004;49(4):379–98.

    Article  PubMed  Google Scholar 

  39. Weleber RG, Tongue AC. Congenital stationary night blindness presenting as Leber’s congenital amaurosis. Arch Ophthalmol. 1987;105(3):360–5.

    Article  CAS  PubMed  Google Scholar 

  40. Weleber RG. The dystrophic retina in multisystem disorders: the electroretinogram in neuronal ceroid lipofuscinoses. Eye. 1998;12(Pt 3b):580–90.

    Article  PubMed  Google Scholar 

  41. Loken AC, Hanssen O, Halvorsen S, Jolster NJ. Hereditary renal dysplasia and blindness. Acta Paediatr. 1961;50:177–84.

    Article  CAS  Google Scholar 

  42. Mauthner L. Ein fall von chorioideremie. Berl natur-med ver Innsbruck. 1872;2:191.

    Google Scholar 

  43. McCulloch C, McCulloch R. A hereditary and clinical study of choroideremia. Trans Am Acad Ophthalmol Otolaryngol. 1948;52:160–90.

    CAS  PubMed  Google Scholar 

  44. MacDonald IM, Sereda C, McTaggart K, Mah D. Choroideremia gene testing. Expert Rev Mol Diagn. 2004;4(4):478–84.

    Article  CAS  PubMed  Google Scholar 

  45. Roberts MF, Fishman GA, Roberts DK, Heckenlively JR, Weleber RG, Anderson RJ, et al. Retrospective, longitudinal, and cross sectional study of visual acuity impairment in choroideraemia. Br J Ophthalmol. 2002;86(6):658–62.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lewis RA, Nussbaum RL, Ferrell R. Mapping X-linked ophthalmic diseases. Provisional assignment of the locus for choroideremia to Xq13-q24. Ophthalmology. 1985;92(6):800–6.

    Article  CAS  PubMed  Google Scholar 

  47. Nussbaum RL, Lewis RA, Lesko JG, Ferrell R. Mapping X-linked ophthalmic diseases: II. Linkage relationship of X-linked retinitis pigmentosa to X chromosomal short arm markers. Hum Genet. 1985;70(1):45–50.

    Article  CAS  PubMed  Google Scholar 

  48. Seabra MC, Brown MS, Slaughter CA, Sudhof TC, Goldstein JL. Purification of component A of Rab geranylgeranyl transferase: possible identity with the choroideremia gene product. Cell. 1992;70(6):1049–57.

    Article  CAS  PubMed  Google Scholar 

  49. Renner AB, Kellner U, Cropp E, Preising MN, MacDonald IM, van den Hurk JA, et al. Choroideremia: variability of clinical and electrophysiological characteristics and first report of a negative electroretinogram. Ophthalmology. 2006;113(11):2066.e1–10.

    Article  Google Scholar 

  50. Preising MN, Wegscheider E, Friedburg C, Poloschek CM, Wabbels BK, Lorenz B. Fundus autofluorescence in carriers of choroideremia and correlation with electrophysiologic and psychophysical data. Ophthalmology. 2009;116(6):1201-9.e1-2.

    Article  PubMed  Google Scholar 

  51. Noble KG, Carr RE, Siegel IM. Fluorescein angiography of the hereditary choroidal dystrophies. Br J Ophthalmol. 1977;61(1):43–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xue K, Oldani M, Jolly JK, Edwards TL, Groppe M, Downes SM, et al. Correlation of optical coherence tomography and autofluorescence in the outer retina and choroid of patients with choroideremia. Invest Ophthalmol Vis Sci. 2016;57(8):3674–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Francis PJ, Fishman GA, Trzupek KM, MacDonald IM, Stone EM, Weleber RG. Stop mutations in exon 6 of the choroideremia gene, CHM, associated with preservation of the electroretinogram. Arch Ophthalmol. 2005;123(8):1146–9.

    Article  PubMed  Google Scholar 

  54. Lim LS, Mitchell P, Seddon JM, Holz FG, Wong TY. Age-related macular degeneration. Lancet. 2012;379(9827):1728–38.

    Article  PubMed  Google Scholar 

  55. Rudnicka AR, Jarrar Z, Wormald R, Cook DG, Fletcher A, Owen CG. Age and gender variations in age-related macular degeneration prevalence in populations of European ancestry: a meta-analysis. Ophthalmology. 2012;119(3):571–80.

    Article  PubMed  Google Scholar 

  56. Saksens NT, Fleckenstein M, Schmitz-Valckenberg S, Holz FG, den Hollander AI, Keunen JE, et al. Macular dystrophies mimicking age-related macular degeneration. Prog Retin Eye Res. 2014;39:23–57.

    Article  PubMed  Google Scholar 

  57. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, et al. Complement factor H polymorphism in age-related macular degeneration. Science. 2005;308(5720):385–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hageman GS, Anderson DH, Johnson LV, Hancox LS, Taiber AJ, Hardisty LI, et al. A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci U S A. 2005;102(20):7227–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P, et al. Complement factor H variant increases the risk of age-related macular degeneration. Science. 2005;308(5720):419–21.

    Article  CAS  PubMed  Google Scholar 

  60. Edwards AO, Ritter R 3rd, Abel KJ, Manning A, Panhuysen C, Farrer LA. Complement factor H polymorphism and age-related macular degeneration. Science. 2005;308(5720):421–4.

    Article  CAS  PubMed  Google Scholar 

  61. Gold B, Merriam JE, Zernant J, Hancox LS, Taiber AJ, Gehrs K, et al. Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet. 2006;38(4):458–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Maller JB, Fagerness JA, Reynolds RC, Neale BM, Daly MJ, Seddon JM. Variation in complement factor 3 is associated with risk of age-related macular degeneration. Nat Genet. 2007;39(10):1200–1.

    Article  CAS  PubMed  Google Scholar 

  63. Jakobsdottir J, Conley YP, Weeks DE, Mah TS, Ferrell RE, Gorin MB. Susceptibility genes for age-related maculopathy on chromosome 10q26. Am J Hum Genet. 2005;77(3):389–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rivera A, Fisher SA, Fritsche LG, Keilhauer CN, Lichtner P, Meitinger T, et al. Hypothetical LOC387715 is a second major susceptibility gene for age-related macular degeneration, contributing independently of complement factor H to disease risk. Hum Mol Genet. 2005;14(21):3227–36.

    Article  CAS  PubMed  Google Scholar 

  65. Wang L, Clark ME, Crossman DK, Kojima K, Messinger JD, Mobley JA, et al. Abundant lipid and protein components of drusen. PLoS One. 2010;5(4):e10329.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Gass’ AA. Atlas of macular diseases. 5th ed. Nashville: Elsevier; 2012.

    Google Scholar 

  67. van de Ven JP, Boon CJ, Fauser S, Hoefsloot LH, Smailhodzic D, Schoenmaker-Koller F, et al. Clinical evaluation of 3 families with basal laminar drusen caused by novel mutations in the complement factor H gene. Arch Ophthalmol. 2012;130(8):1038–47.

    PubMed  Google Scholar 

  68. Spaide RF, Curcio CA. Drusen characterization with multimodal imaging. Retina. 2010;30(9):1441–54. https://doi.org/10.1097/IAE.0b013e3181ee5ce8.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Klein R, Davis MD, Magli YL, Segal P, Klein BE, Hubbard L. The Wisconsin age-related maculopathy grading system. Ophthalmology. 1991;98(7):1128–34.

    Article  CAS  PubMed  Google Scholar 

  70. Mimoun G, Soubrane G, Coscas G. Macular drusen. J Fr Ophtalmol. 1990;13(10):511–30.

    CAS  PubMed  Google Scholar 

  71. Klein R, Meuer SM, Knudtson MD, Iyengar SK, Klein BE. The epidemiology of retinal reticular drusen. Am J Ophthalmol. 2008;145(2):317–26.

    Article  PubMed  Google Scholar 

  72. Knudtson MD, Klein R, Klein BE, Lee KE, Meuer SM, Tomany SC. Location of lesions associated with age-related maculopathy over a 10-year period: the beaver dam eye study. Invest Ophthalmol Vis Sci. 2004;45(7):2135–42.

    Article  PubMed  Google Scholar 

  73. Greferath U, Guymer RH, Vessey KA, Brassington K, Fletcher EL. Correlation of histologic features with in vivo imaging of reticular Pseudodrusen. Ophthalmology. 2016;123(6):1320–31.

    Article  PubMed  Google Scholar 

  74. Curcio CA, Messinger JD, Sloan KR, McGwin G, Medeiros NE, Spaide RF. Subretinal drusenoid deposits in non-neovascular age-related macular degeneration: morphology, prevalence, topography, and biogenesis model. Retina. 2013;33(2):265–76. https://doi.org/10.1097/IAE.0b013e31827e25e0.

    Article  PubMed  Google Scholar 

  75. Grossniklaus HE, Miskala PH, Green WR, Bressler SB, Hawkins BS, Toth C, et al. Histopathologic and ultrastructural features of surgically excised subfoveal choroidal neovascular lesions: submacular surgery trials report no. 7. Arch Ophthalmol. 2005;123(7):914–21.

    Article  PubMed  Google Scholar 

  76. Pauleikhoff D, Zuels S, Sheraidah GS, Marshall J, Wessing A, Bird AC. Correlation between biochemical composition and fluorescein binding of deposits in Bruch’s membrane. Ophthalmology. 1992;99(10):1548–53.

    Article  CAS  PubMed  Google Scholar 

  77. Schmitz-Valckenberg S, Fleckenstein M, Gobel AP, Hohman TC, Holz FG. Optical coherence tomography and autofluorescence findings in areas with geographic atrophy due to age-related macular degeneration. Invest Ophthalmol Vis Sci. 2011;52(1):1–6.

    Article  PubMed  Google Scholar 

  78. Forte R, Querques G, Querques L, Massamba N, Le Tien V, Souied EH. Multimodal imaging of dry age-related macular degeneration. Acta Ophthalmol. 2012;90(4):e281–7. https://doi.org/10.1111/j.1755-3768.2011.02331.x.

    Article  PubMed  Google Scholar 

  79. McBain VA, Townend J, Lois N. Fundus autofluorescence in exudative age-related macular degeneration. Br J Ophthalmol. 2007;91(4):491–6.

    Article  PubMed  Google Scholar 

  80. Warrow DJ, Hoang QV, Freund KB. Pachychoroid pigment epitheliopathy. Retina. 2013;33(8):1659–72.

    Article  PubMed  Google Scholar 

  81. Wiszniewski W, Zaremba CM, Yatsenko AN, Jamrich M, Wensel TG, Lewis RA, et al. ABCA4 mutations causing mislocalization are found frequently in patients with severe retinal dystrophies. Hum Mol Genet. 2005;14(19):2769–78.

    Article  CAS  PubMed  Google Scholar 

  82. Allikmets R. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet. 1997;17(1):122.

    CAS  PubMed  Google Scholar 

  83. Quazi F, Lenevich S, Molday RS. ABCA4 is an N-retinylidene-phosphatidylethanolamine and phosphatidylethanolamine importer. Nat Commun. 2012;3:925.

    Article  PubMed  CAS  Google Scholar 

  84. Radu RA, Mata NL, Bagla A, Travis GH. Light exposure stimulates formation of A2E oxiranes in a mouse model of Stargardt’s macular degeneration. Proc Natl Acad Sci U S A. 2004;101(16):5928–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sparrow JR, Vollmer-Snarr HR, Zhou J, Jang YP, Jockusch S, Itagaki Y, et al. A2E-epoxides damage DNA in retinal pigment epithelial cells. Vitamin E and other antioxidants inhibit A2E-epoxide formation. J Biol Chem. 2003;278(20):18207–13.

    Article  CAS  PubMed  Google Scholar 

  86. Burke TR, Tsang SH. Allelic and phenotypic heterogeneity in ABCA4 mutations. Ophthalmic Genet. 2011;32(3):165–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fishman GA. Fundus flavimaculatus. A clinical classification. Arch Ophthalmol. 1976;94(12):2061–7.

    Article  CAS  PubMed  Google Scholar 

  88. Westeneng-van Haaften SC, Boon CJ, Cremers FP, Hoefsloot LH, den Hollander AI, Hoyng CB. Clinical and genetic characteristics of late-onset Stargardt’s disease. Ophthalmology. 2012;119(6):1199–210.

    Article  PubMed  Google Scholar 

  89. Ergun E, Hermann B, Wirtitsch M, Unterhuber A, Ko TH, Sattmann H, et al. Assessment of central visual function in Stargardt’s disease/fundus flavimaculatus with ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci. 2005;46(1):310–6.

    Article  PubMed  Google Scholar 

  90. Oh KT, Weleber RG, Stone EM, Oh DM, Rosenow J, Billingslea AM. Electroretinographic findings in patients with Stargardt disease and fundus flavimaculatus. Retina. 2004;24(6):920–8.

    Article  PubMed  Google Scholar 

  91. Mohler CW, Fine SL. Long-term evaluation of patients with Best’s vitelliform dystrophy. Ophthalmology. 1981;88(7):688–92.

    Article  CAS  PubMed  Google Scholar 

  92. Chung MM, Oh KT, Streb LM, Kimura AE, Stone EM. Visual outcome following subretinal hemorrhage in best disease. Retina. 2001;21(6):575–80.

    Article  CAS  PubMed  Google Scholar 

  93. Clemett R. Vitelliform dystrophy: long-term observations on New Zealand pedigrees. Aust N Z J Ophthalmol. 1991;19(3):221–7.

    Article  CAS  PubMed  Google Scholar 

  94. Hartzell HC, Qu Z, Yu K, Xiao Q, Chien LT. Molecular physiology of bestrophins: multifunctional membrane proteins linked to best disease and other retinopathies. Physiol Rev. 2008;88(2):639–72.

    Article  CAS  PubMed  Google Scholar 

  95. Stuck MW, Conley SM, Naash MI. RDS functional domains and dysfunction in disease. Adv Exp Med Biol. 2016;854:217–22. https://doi.org/10.1007/978-3-319-17121-0_29.

    Article  CAS  PubMed  Google Scholar 

  96. Spaide RF, Noble K, Morgan A, Freund KB. Vitelliform macular dystrophy. Ophthalmology. 2006;113(8):1392–400.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hogden, M.C., Tsang, S. (2019). Clinical and Pathological Features of Selected Human Retinal Degenerative Diseases. In: Zarbin, M., Singh, M., Casaroli-Marano, R. (eds) Cell-Based Therapy for Degenerative Retinal Disease . Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-030-05222-5_3

Download citation

Publish with us

Policies and ethics