Skip to main content

Gabor Expansions of Signals: Computational Aspects and Open Questions

  • Chapter
  • First Online:
Landscapes of Time-Frequency Analysis

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

In the last 40 years the foundations of Gabor analysis, even in the context of locally compact Abelian (LCA) groups, have been widely developed. We know a lot about function spaces, in particular modulation spaces, characterization of these spaces via Gabor expansions, or mapping properties of operators between such spaces, even the description of solutions for PDEs can nowadays be given in this context. In contrast, the applied literature gives the impression that the computation of dual Gabor windows in the standard situation, i.e. for the Hilbert space \({{{\varvec{L}}^2}({\mathbb R})}\), and a time–frequency lattice of the form \(\varLambda = a {\mathbb Z} \times {b} {{\mathbb Z}}\) is still the most important problem in (numerical) Gabor analysis. The emphasis of this note is on the value of numerical work, which is much more than just numerical realization of theoretical concepts. It has been in many cases the inspiration for the derivation of theoretical results, based on sometimes surprising observations or systematic numerical simulations. According to our experience, numerical Gabor analysis provides a lot of additional insight about the concrete situation; it may suggest new directions and ask for new theory, but of course efficient algorithms often make use of underlying theory. Overall, we observe that there is an urgent need for a stronger link between computational and theoretical Gabor analysis. The note also contains a number of suggestions and even conjectures which are likely to encourage research in the direction indicated above.

Summer 2017 and 2018 TU Munich, Inst. Theor. Inf. Science

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Recall that at the MATLAB command line the “\(*\)” represents matrix multiplication resp. matrix–vector multiplication!

References

  1. I. Amidror. Mastering the Discrete Fourier Transform in One, Two or Several Dimensions. Pitfalls and Artifacts, volume 43. London: Springer, 2013.

    Google Scholar 

  2. P. Balazs, M. Dörfler, F. Jaillet, N. Holighaus, and G. A. Velasco. Theory, implementation and applications of nonstationary Gabor frames. J. Comput. Appl. Math., 236(6):1481–1496, 2011.

    Google Scholar 

  3. P. Balazs, H. G. Feichtinger, M. Hampejs, and G. Kracher. Double preconditioning for Gabor frames. IEEE Trans. Signal Process., 54(12):4597–4610, December 2006.

    Google Scholar 

  4. S. Bannert, K. Gröchenig, and J. Stöckler. Discretized Gabor frames of totally positive functions. IEEE Trans. Information Theory, 60(1):159–169, 2014.

    Google Scholar 

  5. S. Bannert. Banach-Gelfand Triples and Applications in Time-Frequency Analysis. Master’s thesis, University of Vienna, 2010.

    Google Scholar 

  6. P. Boggiatto and E. Cordero. Anti-Wick quantization with symbols in \({L}^p\) spaces. Proc. Amer. Math. Soc., 130(9):2679–2685, 2002.

    Google Scholar 

  7. P. Boggiatto, E. Cordero, and K. Gröchenig. Generalized anti-Wick operators with symbols in distributional Sobolev spaces. Integr. Equ. Oper. Theory, 48(4):427–442, 2004.

    Google Scholar 

  8. A. Borichev, K. Gröchenig, and Y. I. Lyubarskii. Frame constants of Gabor frames near the critical density. J. Math. Pures Appl., 94(2):170–182, August 2010.

    Google Scholar 

  9. P. G. Casazza and O. Christensen. Weyl-Heisenberg frames for subspaces of \({L}^2({R})\). Proc. Amer. Math. Soc., 129(1):145–154, 2001.

    Google Scholar 

  10. O. Christensen, A. Janssen, H. Kim, and R. Kim. Approximately dual Gabor frames and almost perfect reconstruction based on a class of window functions. Adv. Comput. Math., 1–17, 2018.

    Google Scholar 

  11. O. Christensen. An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis. Birkhäuser Basel, Second edition, 2016.

    Google Scholar 

  12. L. A. Coburn. Berezin-Toeplitz quantization. In Curto, Ral E (ed) et al, Algebraic Methods in Operator Theory Boston, MA: Birkhäuser 101–108. 1994.

    Google Scholar 

  13. E. Cordero and K. Gröchenig. On the product of localization operators. In M. Wong, editor, Modern Trends in Pseudo-differential Operators, volume 172 of Oper. Theory Adv. Appl., 279–295. Birkhäuser, Basel, 2007.

    Google Scholar 

  14. E. Cordero and K. Gröchenig. Symbolic calculus and Fredholm property for localization operators. J. Fourier Anal. Appl., 12(4):371–392, 2006.

    Google Scholar 

  15. E. Cordero and K. Gröchenig. Time-frequency analysis of localization operators. J. Funct. Anal., 205(1):107–131, 2003.

    Google Scholar 

  16. E. Cordero and L. Rodino. Short-time Fourier transform analysis of localization operators. volume 451, pages 47–68. Providence, RI: American Mathematical Society (AMS), 2008.

    Google Scholar 

  17. E. Cordero and L. Rodino. Wick calculus: a time-frequency approach. Osaka J. Math., 42(1):43–63, 2005.

    Google Scholar 

  18. E. Cordero and A. Tabacco. Localization operators via time-frequency analysis. In Advances in Pseudo-differential Operators, volume 155 of Oper. Theory Adv. Appl., pages 131–147. Birkhäuser, 2004.

    Google Scholar 

  19. E. Cordero, H. G. Feichtinger, and F. Luef. Banach Gelfand triples for Gabor analysis. In Pseudo-differential Operators, volume 1949 of Lecture Notes in Mathematics, pages 1–33. Springer, Berlin, 2008.

    Google Scholar 

  20. E. Cordero, K. Gröchenig, and F. Nicola. Approximation of Fourier integral operators by Gabor multipliers. J. Fourier Anal. Appl., 18(4):661–684, 2012.

    Google Scholar 

  21. E. Cordero, K. Gröchenig, F. Nicola, and L. Rodino. Wiener algebras of Fourier integral operators. J. Math. Pures Appl. (9), 99(2):219–233, 2013.

    Google Scholar 

  22. E. Cordero, F. Nicola, and L. Rodino. Time-frequency analysis of Fourier integral operators. Commun. Pure Appl. Anal., 9(1):1–21, 2010.

    Google Scholar 

  23. E. Cordero, L. Rodino, and K. Gröchenig. Localization operators and time-frequency analysis. In N. e. a. Chong, editor, Harmonic, Wavelet and p-adic Analysis, pages 83–110. World Sci. Publ., Hackensack, 2007.

    Google Scholar 

  24. X.-R. Dai and Q. Sun. The \(abc\)-problem for Gabor systems. Mem. Amer. Math. Soc., 244(1152):ix+99, 2016.

    Google Scholar 

  25. X.-R. Dai and Q. Sun. The abc-problem for Gabor systems and uniform sampling in shift-invariant spaces. In Excursions in Harmonic Analysis, Volume 3, pages 177–194. 2015.

    Google Scholar 

  26. I. Daubechies, A. Grossmann, and I. Meyer. Frames in the Bargmann space of entire functions. Comm. Pure Appl. Math., 41:151–164, 1990.

    Google Scholar 

  27. I. Daubechies, A. Grossmann, and Y. Meyer. Painless nonorthogonal expansions. J. Math. Phys., 27(5):1271–1283, May 1986.

    Google Scholar 

  28. I. Daubechies, H. J. Landau, and Z. Landau. Gabor time-frequency lattices and the Wexler-Raz identity. J. Fourier Anal. Appl., 1(4):437–478, 1995.

    Google Scholar 

  29. I. Daubechies. Ten Lectures on Wavelets., volume 61 of CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, PA, 1992.

    Google Scholar 

  30. I. Daubechies. Time-frequency localization operators: a geometric phase space approach. IEEE Trans. Inform. Theory, 34(4):605–612, July 1988.

    Google Scholar 

  31. J. G. Daugman. Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression. IEEE Trans. Acoustics, Speech and Signal Processing, 36(7):1169–1179, 1988.

    Google Scholar 

  32. R. J. Duffin and A. C. Schaeffer. A class of nonharmonic Fourier series. Trans. Amer. Math. Soc., 72:341–366, 1952.

    Google Scholar 

  33. M. Englis. Toeplitz operators and localization operators. Trans. Amer. Math. Soc., 361(2):1039–1052, 2009.

    Google Scholar 

  34. M. Faulhuber and S. Steinerberger. Optimal Gabor frame bounds for separable lattices and estimates for Jacobi theta functions. J. Math. Anal. Appl., 445(1):407–422, 2017.

    Google Scholar 

  35. M. Faulhuber. Extremal Bounds of Gaussian Gabor Frames and Properties of Jacobi’s Theta Functions. PhD thesis, 2016.

    Google Scholar 

  36. M. Faulhuber. Gabor frame sets of invariance: a Hamiltonian approach to Gabor frame deformations. J. Pseudo-Differ. Oper. Appl., 7(2):213–235, June 2016.

    Google Scholar 

  37. M. Faulhuber. Geometry and Gabor Frames. Master’s thesis, 2014.

    Google Scholar 

  38. M. Faulhuber. Minimal frame operator norms via minimal theta functions. J. Fourier Anal. Appl., 24(2):545–559, April 2018.

    Google Scholar 

  39. H. G. Feichtinger and K. Gröchenig. Banach spaces related to integrable group representations and their atomic decompositions, I. J. Funct. Anal., 86(2):307–340, 1989.

    Google Scholar 

  40. H. G. Feichtinger and K. Gröchenig. Gabor frames and time-frequency analysis of distributions. J. Funct. Anal., 146(2):464–495, 1997.

    Google Scholar 

  41. H. G. Feichtinger and N. Kaiblinger. 2D-Gabor analysis based on 1D algorithms. In Proc. OEAGM-97 (Hallstatt, Austria), 1997.

    Google Scholar 

  42. H. G. Feichtinger and N. Kaiblinger. Quasi-interpolation in the Fourier algebra. J. Approx. Theory, 144(1):103–118, 2007.

    Google Scholar 

  43. H. G. Feichtinger and N. Kaiblinger. Varying the time-frequency lattice of Gabor frames. Trans. Amer. Math. Soc., 356(5):2001–2023, 2004.

    Google Scholar 

  44. H. G. Feichtinger and W. Kozek. Quantization of TF lattice-invariant operators on elementary LCA groups. In H. G. Feichtinger and T. Strohmer, editors, Gabor analysis and algorithms, Appl. Numer. Harmon. Anal., pages 233–266. Birkhäuser, Boston, MA, 1998.

    Google Scholar 

  45. H. G. Feichtinger and F. Luef. Wiener amalgam spaces for the Fundamental Identity of Gabor Analysis. Collect. Math., 57(Extra Volume (2006)):233–253, 2006.

    Google Scholar 

  46. H. G. Feichtinger and K. Nowak. A first survey of Gabor multipliers. In H. G. Feichtinger and T. Strohmer, editors, Advances in Gabor Analysis, Appl. Numer. Harmon. Anal., pages 99–128. Birkhäuser, 2003.

    Google Scholar 

  47. H. G. Feichtinger and K. Nowak. A Szegö-type theorem for Gabor-Toeplitz localization operators. Michigan Math. J., 49(1):13–21, 2001.

    Google Scholar 

  48. H. G. Feichtinger and D. Onchis. Constructive realization of dual systems for generators of multi-window spline-type spaces. J. Comput. Appl. Math., 234(12):3467–3479, 2010.

    Google Scholar 

  49. H. G. Feichtinger and T. Strohmer. Advances in Gabor Analysis. Birkhäuser, Basel, 2003.

    Google Scholar 

  50. H. G. Feichtinger and T. Strohmer. Gabor Analysis and Algorithms. Theory and Applications. Birkhäuser, Boston, 1998.

    Google Scholar 

  51. H. G. Feichtinger and G. Zimmermann. A Banach space of test functions for Gabor analysis. In H. G. Feichtinger and T. Strohmer, editors, Gabor Analysis and Algorithms: Theory and Applications, Applied and Numerical Harmonic Analysis, pages 123–170. Birkhäuser Boston, 1998.

    Google Scholar 

  52. H. G. Feichtinger, W. Kozek, and F. Luef. Gabor Analysis over finite Abelian groups. Appl. Comput. Harmon. Anal., 26(2):230–248, 2009.

    Google Scholar 

  53. H. G. Feichtinger. A compactness criterion for translation invariant Banach spaces of functions. Analysis Mathematica, 8:165–172, 1982.

    Google Scholar 

  54. H. G. Feichtinger. Banach Gelfand triples for applications in physics and engineering. volume 1146 of AIP Conf. Proc., pages 189–228. Amer. Inst. Phys., 2009.

    Google Scholar 

  55. H. G. Feichtinger. Compactness in translation invariant Banach spaces of distributions and compact multipliers. J. Math. Anal. Appl., 102:289–327, 1984.

    Google Scholar 

  56. H. G. Feichtinger. Modulation spaces of locally compact Abelian groups. In R. Radha, M. Krishna, and S. Thangavelu, editors, Proc. Internat. Conf. on Wavelets and Applications, pages 1–56, Chennai, January 2002, 2003. New Delhi Allied Publishers.

    Google Scholar 

  57. H. G. Feichtinger. Modulation Spaces: Looking Back and Ahead. Sampl. Theory Signal Image Process., 5(2):109–140, 2006.

    Google Scholar 

  58. H. G. Feichtinger. Spline-type spaces in Gabor analysis. In D. X. Zhou, editor, Wavelet Analysis: Twenty Years Developments Proceedings of the International Conference of Computational Harmonic Analysis, Hong Kong, China, June 4–8, 2001, volume 1 of Ser. Anal., pages 100–122. World Sci.Pub., River Edge, NJ, 2002.

    Google Scholar 

  59. D. Gabor. Theory of communication. J. IEE, 93(26):429–457, 1946.

    Google Scholar 

  60. K. Gröchenig and S. Koppensteiner. Gabor Frames: characterizations and coarse structure. ArXiv e-prints, mar 2018.

    Google Scholar 

  61. K. Gröchenig and M. Leinert. Wiener’s lemma for twisted convolution and Gabor frames. J. Amer. Math. Soc., 17:1–18, 2004.

    Google Scholar 

  62. K. Gröchenig and J. Stöckler. Gabor frames and totally positive functions. Duke Math. J., 162(6):1003–1031, 2013.

    Google Scholar 

  63. K. Gröchenig and G. Zimmermann. Spaces of test functions via the STFT. J. Funct. Spaces Appl., 2(1):25–53, 2004.

    Google Scholar 

  64. K. Gröchenig. Acceleration of the frame algorithm. IEEE Trans. SSP, 41/12:3331–3340, 1993.

    Google Scholar 

  65. K. Gröchenig. An uncertainty principle related to the Poisson summation formula. Studia Math., 121(1):87–104, 1996.

    Google Scholar 

  66. K. Gröchenig. Foundations of Time-Frequency Analysis. Appl. Numer. Harmon. Anal. Birkhäuser, Boston, MA, 2001.

    Google Scholar 

  67. M. Hampejs and L. Tóth. On the subgroups of finite Abelian groups of rank three. Annales Univ. Sci. Budapest., Sect. Comp., 39:111–124, 2013.

    Google Scholar 

  68. X. He and H. Li. On the \(abc\)-problem in Weyl-Heisenberg frames. Czechoslovak Math. J., 64(139)(2):447–458, 2014.

    Google Scholar 

  69. F. Hlawatsch, G. Matz, H. Kirchauer, and W. Kozek. Time–frequency formulation and design of time–varying optimal filters. IEEE Trans. Signal Process., 1997.

    Google Scholar 

  70. F. Hlawatsch, G. Matz, H. Kirchauer, and W. Kozek. Time-frequency formulation, design, and implementation of time-varying optimal filters for signal estimation. IEEE Trans. Signal Process., 48(5):1417–1432, 2000.

    Google Scholar 

  71. N. Holighaus, M. Dörfler, G. A. Velasco, and T. Grill. A framework for invertible, real-time constant-Q transforms. IEEE Trans. Audio Speech Lang. Process., 21(4):775 –785, 2013.

    Google Scholar 

  72. N. Holighaus, M. Hampejs, C. Wiesmeyr, and L. Tóth. Representing and counting the subgroups of the group \({Z}_m \times {Z}_n\). J. Number Theory, 2014:6, 2014.

    Google Scholar 

  73. N. Holighaus. Theory and Implementation of Adaptive Time-Frequency Transforms. PhD thesis, University of Vienna, 2013.

    Google Scholar 

  74. O. Hutnik. On Toeplitz localization operators. Arch. Math. (Basel), 97:333–344, 2011.

    Google Scholar 

  75. M. S. Jakobsen and H. G. Feichtinger. The inner kernel theorem for a certain Segal algebra. ArXiv e-prints, June 2018.

    Google Scholar 

  76. A. J. E. M. Janssen. Duality and biorthogonality for Weyl-Heisenberg frames. J. Fourier Anal. Appl., 1(4):403–436, 1995.

    Google Scholar 

  77. A. J. E. M. Janssen. Gabor representation of generalized functions. J. Math. Anal. Appl., 83:377–394, October 1981.

    Google Scholar 

  78. N. Kaiblinger. Approximation of the Fourier transform and the dual Gabor window. J. Fourier Anal. Appl., 11(1):25–42, 2005.

    Google Scholar 

  79. T. Kloos and J. Stöckler. Zak transforms and Gabor frames of totally positive functions and exponential B-splines. J. Approx. Theory, 184:209–237, 2014.

    Google Scholar 

  80. T. Kloos, J. Stöckler, and K. Gröchenig. Implementation of discretized Gabor frames and their duals. IEEE Trans. Inform. Theory, 62(5):2759–2771, 2016.

    Google Scholar 

  81. W. Kozek and K. Riedel. Quadratic time-varying spectral estimation for underspread processes. In Proc. IEEE-SP Internat. Symp. on Time-Frequency and Time-scale Analysis, pages 417–420, Philadelphia/PA, October 1994.

    Google Scholar 

  82. W. Kozek. Adaptation of Weyl-Heisenberg frames to underspread environments. In H. G. Feichtinger and T. Strohmer, editors, Gabor Analysis and Algorithms: Theory and Applications, pages 323–352. Birkhäuser Boston, Boston, 1997.

    Google Scholar 

  83. W. Kozek. On the underspread/overspread classification of nonstationary random processes. In K. Kirchgaessner, Mahrenholtz, and R. Mennicken, editors, Proc. ICIAM 95, Hamburg, July 1995, volume 3 of Mathematical Research, pages 63–66, Berlin, 1996. Akademieverlag.

    Google Scholar 

  84. J. Lemvig. On some Hermite series identities and their applications to Gabor analysis. Monatsh. Math., 182(4):899–912, April 2017.

    Google Scholar 

  85. Y. Lyubarskii. Frames in the Bargmann space of entire functions. In Entire and Subharmonic Functions, Advances in Soviet Mathematics, 11:167–180, Amer. Math. Soc., 1992.

    Google Scholar 

  86. A. Missbauer. Gabor Frames and the Fractional Fourier Transform. Master’s thesis, University of Vienna, 2012.

    Google Scholar 

  87. M. Porat and Y. Y. Zeevi. The generalized Gabor scheme of image representation in biological and machine vision. IEEE Trans. Patt. Anal. Mach. Intell., 10(4):452–468, July 1988.

    Google Scholar 

  88. Z. Prusa, P. Sondergaard, P. Balazs, and N. Holighaus. LTFAT: A Matlab/Octave toolbox for sound processing. In Proc. 10th International Symposium on Computer Music Multidisciplinary Research (CMMR), pages 299–314, 2013.

    Google Scholar 

  89. Z. Prusa. The Phase Retrieval Toolbox. In Audio Engineering Society Conference: 2017 AES International Conference on Semantic Audio, 2017.

    Google Scholar 

  90. S. Qiu and H. G. Feichtinger. Discrete Gabor structures and optimal representation. IEEE Trans. Signal Process., 43(10):2258–2268, October 1995.

    Google Scholar 

  91. S. Qiu and H. G. Feichtinger. The structure of the Gabor matrix and efficient numerical algorithms for discrete Gabor expansion. In Proc. SPIE VCIP94, SPIE 2308, pages 1146–1157, Chicago, 1994.

    Google Scholar 

  92. S. Qiu. Characterizations of Gabor-Gram matrices and efficient computations of discrete Gabor coefficients. In A. F. Laine, M. A. Unser, and V. Wickershauser, editors, Proc. SPIE Wavelet Applications in Signal and Image Processing III, volume 2569, pages 678–688, 1995.

    Google Scholar 

  93. S. Qiu. Gabor-type matrix algebra and fast computations of dual and tight Gabor wavelets. Opt. Eng., 36(1):276–282, 1997.

    Google Scholar 

  94. S. Qiu. Generalized dual Gabor atoms and best approximations by Gabor family. Signal Process., 49:167–186, 1996.

    Google Scholar 

  95. S. Qiu. Matrix approaches to discrete Gabor transform. PhD thesis, Dept. Mathematics, Univ. Vienna, June 2000.

    Google Scholar 

  96. S. Qiu. Structural properties of the Gabor transform and numerical algorithms. Proc. SPIE, vol. 2491, Wavelet Applications for Dual Use, pages 980–991, 1995.

    Google Scholar 

  97. S. Qiu. Super-fast computations of dual and tight Gabor atoms. In F. Laine, M. A. Unser, and V. Wickershauser, editors, Proc. SPIE Wavelet Applications in Signal and Image Processing III, volume 2569, pages 464–475, 1995.

    Google Scholar 

  98. A. Ron and Z. Shen. Frames and stable bases for subspaces of \({L}^2({R}^d)\): the duality principle of Weyl-Heisenberg sets. In M. Chu, R. Plemmons, D. Brown, and D. Ellison, editors, Proceedings of the Lanczos Centenary Conference Raleigh, NC., pages 422–425. SIAM, 1993.

    Google Scholar 

  99. A. Ron and Z. Shen. Weyl-Heisenberg frames and Riesz bases in \({L}_2({\mathbb{R}}^{d})\). Duke Math. J., 89(2):237–282, 1997.

    Google Scholar 

  100. C. Schoerkhuber, A. Klapuri, N. Holighaus, and M. Dörfler. A MATLAB toolbox for efficient perfect reconstruction time-frequency transforms with log-frequency resolution. volume 53. Proceedings of the 53rd AES international conference on semantic audio. London, UK, 2014.

    Google Scholar 

  101. K. Seip, and R. Wallsten. Density theorems for sampling and interpolation in the Bargmann-Fock space II. J. Reine Angew. Math., 429:107–113, 1992.

    Google Scholar 

  102. K. Seip. Density theorems for sampling and interpolation in the Bargmann-Fock space I. J. Reine Angew. Math., 429:91–106, 1992.

    Google Scholar 

  103. P. Sondergaard, B. Torrésani, and P. Balazs. The Linear Time Frequency Analysis Toolbox. International Journal of Wavelets, Multiresolution and Information Processing, 10(4):1250032, 2012.

    Google Scholar 

  104. T. Strohmer and S. Beaver. Optimal OFDM system design for time-frequency dispersive channels. IEEE Trans. Comm., 51(7):1111–1122, July 2003.

    Google Scholar 

  105. J. Toft and P. Boggiatto. Schatten classes for Toeplitz operators with Hilbert space windows on modulation spaces. Adv. Math., 217(1):305–333, 2008.

    Google Scholar 

  106. L. Toth. The number of subgroups of the group \({Z}_m \times {Z}_n \times {Z}_r \times {Z}_s\). ArXiv e-prints, November 2016.

    Google Scholar 

  107. T. Tschurtschenthaler. The Gabor Frame Operator (its Structure and Numerical Consequences). Master’s thesis, University of Vienna, 2000.

    Google Scholar 

  108. G. A. Velasco. Time-Frequency Localization and Sampling in Gabor Analysis. PhD thesis, Universität Wien, 2015.

    Google Scholar 

  109. D. G. Voelz. Computational Fourier Optics. A MATLAB Tutorial. Tutorial text. Vol. 89. SPIE, 2011.

    Google Scholar 

  110. J. von Neumann. Mathematical Foundations of Quantum Mechanics., Robert T. Beyer, 1955.

    Google Scholar 

  111. D. F. Walnut. Continuity properties of the Gabor frame operator. J. Math. Anal. Appl., 165(2):479–504, 1992.

    Google Scholar 

  112. J. Wexler and S. Raz. Discrete Gabor expansions. Signal Process., 21:207–220, 1990.

    Google Scholar 

  113. C. Wiesmeyr. Construction of frames by discretization of phase space. PhD thesis, Universität Wien, 2014.

    Google Scholar 

  114. M. Zibulski and Y. Y. Zeevi. Analysis of multiwindow Gabor-type schemes by frame methods. Appl. Comput. Harmon. Anal., 4(2):188–221, 1997.

    Google Scholar 

  115. M. Zibulski and Y. Y. Zeevi. Discrete multiwindow Gabor-type transforms. IEEE Trans. Signal Process., 45(6):1428–1442, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans G. Feichtinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feichtinger, H.G. (2019). Gabor Expansions of Signals: Computational Aspects and Open Questions. In: Boggiatto, P., et al. Landscapes of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-05210-2_7

Download citation

Publish with us

Policies and ethics