Skip to main content

Plasma-Catalytic Reforming of Alcohols

  • Chapter
  • First Online:
Plasma Catalysis

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 106))

  • 1266 Accesses

Abstract

The conversion of biomass-derived fuels (e.g. methanol) to higher value platform chemicals has attracted increasing interest in recent years. This chapter reviews recent process and future perspective in the reforming of alcohols using plasma catalysis. The possible reaction mechanisms in the plasma-catalytic reforming of alcohols has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Olah, G. A. (2005). Beyond oil and gas: The methanol economy. Angewandte Chemie International Edition, 44, 2636–2639.

    Article  Google Scholar 

  2. Sheldon, R., Arends, I. W. C., Arends, E., & Dijksman, A. (2000). New developments in catalytic alcohol oxidations for fine chemicals synthesis. Catalysis Today, 57, 157–166.

    Article  Google Scholar 

  3. Calkins, W. H. (1984). Chemicals from methanol. Catalysis Reviews Science and Engineering, 26, 347–358.

    Article  Google Scholar 

  4. Kaeding, W. W., & Butter, S. A. (1980). Production of chemicals from methanol: I. low molecular weight olefins. Journal of Catalysis, 61, 155–164.

    Article  Google Scholar 

  5. Lamy, C., Lima, A., LeRhun, V., Delime, F., Coutanceau, C., & Léger, J. (2002). Recent advances in the development of direct alcohol fuel cells (DAFC). Journal of Power Sources, 105, 283–296.

    Google Scholar 

  6. Hill, J., Nelson, E., Tilman, D., Polasky, S., & Tiffany, D. (2006). Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the National Academy of Sciences, 103, 11206–11210.

    Google Scholar 

  7. Dillon, R., Srinivasan, S., Aricò, A. S., & Antonucci, V. (2004). International activities in DMFC R&D: Status of technologies and potential applications. Journal of Power Sources, 127, 112–126.

    Article  ADS  Google Scholar 

  8. Bguyen, V. L., Cao, M. T., Masayuki, N., & Michitaka, O. (2012) Heat treatment - conventional and novel applications, Chapter 11, INTECH, ISBN 978-953-51-0768-2, 2012 under.

    Google Scholar 

  9. Balat, M., & Balat, H. (2009). Recent trends in global production and utilization of bio-ethanol fuel. Applied Energy, 86, 2273–2282.

    Article  Google Scholar 

  10. http://www.consumerenergycenter.org/transportation/afvs/ethanol.html

  11. Farrell, A. E., Plevin, R. J., Turner, B. T. Jones, A. D., O’Hare, M., & Kammen, D. M. (2006). Ethanol can contribute to energy and environmental goals. Science, 311, 506–508.

    Article  ADS  Google Scholar 

  12. Tian, P., Wei, Y., Ye, M., & Liu, Z. (2015). Methanol to olefins (MTO): From fundamentals to commercialization. ACS Catalysis, 5, 1922–1938.

    Article  Google Scholar 

  13. Coal to chemicals: Is it coal’s time again? Nexant/ChemSystems MultiClient Report, January 2006.

    Google Scholar 

  14. Stöcker, M. (1999). Methanol-to-hydrocarbons: Catalytic materials and their behavior. Microporous and Mesoporous Materials, 29, 3–48.

    Article  Google Scholar 

  15. Hindman, H. (2013). Methanol to gasoline technology. The Twenty-third International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers.

    Google Scholar 

  16. Methanol to Gasoline (MTG): Production of Clean Gasoline from Coal. Exon Mobil Research and Engineering. Available from http://www.exxonmobil.com/Apps/Refining Technologies/files/sellsheet_09_mtg_brochure.pdf.

  17. Peppley, B. A., Armphlett, J. C., Kearns, L. M., & Mann, R. F. (1999). Methanol–steam reforming on Cu/ZnO/Al2O3. Part 1: The reaction network. Applied Catalysis A: General, 179, 21–29.

    Article  Google Scholar 

  18. Velu, S., Suzuki, K., Okazaki, M., Kapoor, M. P., Osaki, T., & Ohashi, F. (2000). Oxidative steam reforming of methanol over CuZnAl (Zr)-oxide catalysts for the selective production of hydrogen for fuel cells: Catalyst characterization and performance evaluation. Journal of Catalysis, 194, 373–384.

    Article  Google Scholar 

  19. Deo, G., & Wachs, I. E. (1994). Reactivity of supported vanadium oxide catalysts: The partial oxidation of methanol. Journal of Catalysis, 146, 323–334.

    Article  Google Scholar 

  20. Alejo, L., Lago, R., Peña, M. A., & Fierro, J. L. G. (1997). Partial oxidation of methanol to produce hydrogen over Cu-Zn-based catalysts. Applied Catalysis A: General, 162, 281–297.

    Article  Google Scholar 

  21. Ueno, A., Onishi, T., & Tamaru, K. (1971). Reaction intermediates in methyl alcohol decomposition on ZnO. Transactions of the Faraday Society, 67, 3585–3589.

    Article  Google Scholar 

  22. Sá, S., Silva, H., Bandão, L., Sousa, J. M., & Mendes, A. (2010). Catalysts for methanol steam reforming—A review. Applied Catalysis B: Environmental, 99, 43–57.

    Google Scholar 

  23. Mattos, L. V., Jacobs, G., Davis, B. H. & Noronha, F. B. (2012). Production of hydrogen from ethanol: Review of reaction mechanism and catalyst deactivation. Chemical Reviews, 112, 4094–4123.

    Google Scholar 

  24. Yong, S. T., Ooi, C. W., Chai, S. P., & Wu, X. S. (2013). Review of methanol reforming-Cu-based catalysts, surface reaction mechanisms, and reaction schemes. International Journal of Hydrogen Energy, 38, 9541–9552.

    Article  Google Scholar 

  25. Chang, J.-S., Lawless, P. A., & Yamamoto, T. (1991). Corona discharge processes. IEEE Transactions on Plasma Science, 19, 1152–1166.

    Article  ADS  Google Scholar 

  26. Tabrizchi, M., Khayamian, T., & Taj, N. (2000). Design and optimization of a corona discharge ionization source for ion mobility spectrometry. Review of Scientific Instruments, 71, 2321–2328.

    Article  ADS  Google Scholar 

  27. Kogelschatz, U. (2003). Dielectric-barrier discharges: Their history, discharge physics, and industrial applications. Plasma Chemistry and Plasma Processing, 23, 1–46.

    Article  Google Scholar 

  28. Massines, F., Ségui, P., Gherardi, N., Khamphan, C., & Ricard, A. (2003). Physics and chemistry in a glow dielectric barrier discharge at atmospheric pressure: Diagnostics and modelling. Surface and Coatings Technology, 174, 8–14.

    Article  Google Scholar 

  29. Czernichowski, A. (1994). Gliding arc: Applications to engineering and environment control. Pure and Applied Chemistry, 66, 1301–1310.

    Article  Google Scholar 

  30. Fridman, A., Nester, S., Kennedy, L. A., Saceliev, A., & Mutaf-Yardimci, O. (1999). Gliding arc gas discharge. Progress in Energy and Combustion Science, 25, 211–231.

    Article  Google Scholar 

  31. Lee, D., Kim, T., Cha, M., & Song, Y. (2007). Optimization scheme of a rotating gliding arc reactor for partial oxidation of methane. Proceedings of the Combustion Institute, 31, 3343–3351.

    Article  Google Scholar 

  32. Lee, D., Kim, T., Cha, M., & Song, Y. (2010). Plasma-controlled chemistry in plasma reforming of methane. International Journal of Hydrogen Energy, 35, 10967–10976.

    Article  Google Scholar 

  33. Schoenbach, K. H., El-Habachi, A., Shi, W., & Ciocca, M. (1997). High-pressure hollow cathode discharges. Plasma Sources Science and Technology, 6, 468.

    Article  ADS  Google Scholar 

  34. Schoenbach, K. H., Verhappen, R., Tessnow, T., & Peterkin, F. E. (1996). Microhollow cathode discharges. Applied Physics Letters, 68, 13–15.

    Article  ADS  Google Scholar 

  35. Meek, J. M. (1940). A theory of spark discharge. Physical Review, 57, 722.

    Article  ADS  Google Scholar 

  36. Loeb, L. B., & Meek, J. M. (1940). The mechanism of spark discharge in air at atmospheric pressure. I. Journal of Applied Physics, 11, 438–447.

    Article  ADS  Google Scholar 

  37. Du, C. M., Mo, J. M., & Li, H. X. (2014). Renewable hydrogen production by alcohols reforming using plasma and plasma-catalytic technologies: Challenges and opportunities. Chemical Reviews, 115, 1503–1542.

    Article  Google Scholar 

  38. Bromberg, L., Cohn, D. R., Rabinovich, A., Alexeev, N., Samokhin, N., Hadidi, K., & Kaaja, R. (2006). Plasma Science and Fusion Center, JA-02-30.

    Google Scholar 

  39. Du, C., Li, H., Zhang, L., Wang J., Huang D., Xiao M., Cai J., Chen Y., Yan H., & Xiong Y. (2012). Hydrogen production by steam-oxidative reforming of bio-ethanol assisted by Laval nozzle arc discharge. International Journal of Hydrogen Energy, 37, 8318–8329.

    Google Scholar 

  40. Bundaleska, N., Tatarova, E., Dias, F. M., & Ferreira, C. M. (2014). Steam reforming of ethanol into hydrogen-rich gas using microwave Ar/water “tornado”–Type plasma. International Journal of Hydrogen Energy, 39, 5663–5670.

    Google Scholar 

  41. Sarmiento, B., Brey, J. J., Viera, I. G., González-Elipe, A. R., Cotrino, J., & Rico, V. J. (2007). Hydrogen production by reforming of hydrocarbons and alcohols in a dielectric barrier discharge. Journal of Power Sources, 169, 140–143.

    Article  ADS  Google Scholar 

  42. Paterkowski, W., Parus, W., & Kalisiak, S. (2009). Destructive oxidation of ethanol in the corona discharge reactor. Polish Journal of Chemical Technology, 11, 57–62.

    Article  Google Scholar 

  43. Hoang, T. Q., Zhu, X. l., Lobban, L. L., & Mallinson, R. G. (2011). Effects of gap and elevated pressure on ethanol reforming in a non-thermal plasma reactor. Journal of Physics D: Applied Physics, 44, 274003.

    Article  ADS  Google Scholar 

  44. Yan, Z. C., Li, C., & Lin, W. H. (2009). Hydrogen generation by glow discharge plasma electrolysis of methanol solutions. International Journal of Hydrogen Energy, 34, 48–55.

    Article  Google Scholar 

  45. Aubry, O., Met, C., Khacef, A., & Cormier, J. M., (2005). On the use of a non-thermal plasma reactor for ethanol steam reforming. Chemical Engineering Journal, 106, 241–247.

    Article  Google Scholar 

  46. Chernyak, V. Y., Olszewski, S. V., Yukhymenko, V. V., Solomenko E. V., Prysiazhnevych, I. V., Naumov, V. V., Levko, D. S., Shchedrin, A. I., Ryabtsev, A. V., Demchina, V. P., Kudryavtsev, V. S., Martysh, E. V., & Verovchuck, M. A. (2008). Plasma-assisted reforming of ethanol in dynamic plasma-liquid system: Experiments and modeling. IEEE Transactions on Plasma Science, 36, 2933–2939.

    Google Scholar 

  47. Jiang, C. J., Trimm D.L., Wainwright, M.S. & Cant, X.W. (1993). Kinetic mechanism for the reaction between methanol and water over a Cu-ZnO-Al2O3 catalyst. Applied Catalysis A: General, 97, 145–158.

    Google Scholar 

  48. Jiang, C. J., Trimm D. L., Wainwright, M. S., & Cant, X. W., (1993). Kinetic study of steam reforming of methanol over copper-based catalysts. Applied Catalysis A: General, 93, 245–255.

    Article  Google Scholar 

  49. Peppley, B. A., Amphlett, J. C. C., Kenrns, L. M., & Mann, F. R. (1999). Methanol–steam reforming on Cu/ZnO/Al2O3. Part 1: The reaction network. Applied Catalysis A: General, 179, 21–29.

    Google Scholar 

  50. Takezawa, N., & Iwasa, N. (1997). Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group VIII metals. Catalysis Today, 36, 45–56.

    Article  Google Scholar 

  51. Frank, B., Jentoft, F. C., Soerijanto, H., Schlogl, R., & Schomacker, R. (2007). Steam reforming of methanol over copper-containing catalysts: Influence of support material on microkinetics. Journal of Catalysis, 246, 177–192.

    Article  Google Scholar 

  52. Zanchet, D., Santos, J. B. O., Damyanova, S., Gallo, J. M. R., & Bueno, J. M. C. (2015). Toward understanding metal-catalyzed ethanol reforming. ACS Catalysis, 5, 3841–3863.

    Article  Google Scholar 

  53. Mavrikakis, M., & Barteau, M. A. (1998). Oxygenate reaction pathways on transition metal surfaces. Journal of Molecular Catalysis A: Chemical, 131, 135–147.

    Article  Google Scholar 

  54. Baxter, R. J., & Hu, P. (2002). Insight into why the Langmuir–Hinshelwood mechanism is generally preferred. The Journal of Chemical Physics, 116, 4379.

    Article  ADS  Google Scholar 

  55. Kim, T., Lee, D. H., Jo, S., Pyun, S. H., Kim, K., & Song Y. H. (2016). Mechanism of the accelerated reduction of an oxidized metal catalyst under electric discharge. ChemCatChem, 8, 685–689.

    Article  Google Scholar 

  56. Li, H. (2012). Master Thesis, Sun Yat-Sen University, Ethanol reforming using nonthermal arc discharges.

    Google Scholar 

  57. Lee, D. H., & Kim, T. (2014). Effect of catalyst deactivation on kinetics of plasma-catalysis for methanol decomposition. Plasma Processes and Polymers, 11, 455–463.

    Article  MathSciNet  Google Scholar 

  58. Levko, D., Shchedrin, A., Chernyak, V., Olszewski, S., & Nedybaliuk, O. (2011). Plasma kinetics in ethanol/water/air mixture in a ‘tornado’-type electrical discharge. Journal of Physics D: Applied Physics, 44, 145206.

    Google Scholar 

  59. Levko, D., Shchedrin, A., Naumov, V., Chernyak, V., Yukhymenko, V., Prysiazhnevych, I., & Olszewski, S. (2008). Modeling of plasma-assisted conversion of liquid ethanol into hydrogen enriched syngas in the nonequilibrium electric discharge plasma-liquid system. arXiv preprint arXiv, 0809.0968.

    Google Scholar 

  60. Shchedrin, A. I., Levko, D. S., Ryabtsev, A. V., Chernyak, V. Ya., Yukhimenko, V. V., Ol’shevskiy, S. V., Prisyazhnevich, I. V., Solomenke, E. V., Naumov, V. V., Demchina, V. P., & Kudryavtsev, V. S. (2008). Plasma’s kinetics in discharge in mixture of air, water and ethanol steams and the questions of alternative fuel. Вопросы атомной науки и техники.

    Google Scholar 

  61. Lee, D. H., & Kim, T. (2014). Effect of catalyst deactivation on kinetics of plasma-catalysis for methanol decomposition. Plasma Processes and Polymers, 11, 455–463.

    Article  MathSciNet  Google Scholar 

  62. Kang, W. S., Park, J. M., Kim, Y., & Hong, S. H. (2003). Numerical study on influences of barrier arrangements on dielectric barrier discharge characteristics. IEEE Transactions on Plasma Science, 31, 504–510.

    Article  ADS  Google Scholar 

  63. Kim, H. H., Teramoto, Y., Negishi, N., & Ogata, A. (2015). A multidisciplinary approach to understand the interactions of nonthermal plasma and catalyst: A review. Catalysis Today, 256, 13–22.

    Article  Google Scholar 

  64. Jo, S., Kim, T., Lee, D. H., kang, W. S., & Song, Y. H. (2014). Effect of the electric conductivity of a catalyst on methane activation in a dielectric barrier discharge reactor. Plasma Chemistry and Plasma Processing, 34, 175–186.

    Google Scholar 

  65. Crim, F. F. (2008). Chemical dynamics of vibrationally excited molecules: Controlling reactions in gases and on surfaces. Proceedings of the National Academy of Sciences, 105, 12654–12661.

    Article  ADS  Google Scholar 

  66. Halonen, L. (2001). Reactivity of vibrationally excited methane on nickel surfaces. The Journal of Chemical Physics, 115, 5611.

    Article  ADS  Google Scholar 

  67. Shirazi, M., Neyts, E. C., & Bogaerts, A. (2017). DFT study of Ni-catalyzed plasma dry reforming of methane. Applied Catalysis B: Environmental, 205, 605–614.

    Article  Google Scholar 

  68. Juaristi, J. I., Alducin, M., Diez Muiño, R., Busnengo, H. F., & Salin, A. (2008). Role of electron-hole pair excitations in the dissociative adsorption of diatomic molecules on metal surfaces. Physical Review Letters, 100, 116102.

    Article  ADS  Google Scholar 

  69. Kim, T., Lee, Dae H., Jo, S., Pyun, S. H. & Kim, K. T. (2016). Mechanism of the accelerated reduction of an oxidized metal catalyst under electric discharge. ChemCatChem, 8, 685–689.

    Google Scholar 

  70. Kratzer, P., & Brenig, W. (1991). Highly excited molecules from Eley-Rideal reactions. Surface Science, 254, 275–280.

    Article  ADS  Google Scholar 

  71. King, D. A. (1975). Thermal desorption from metal surfaces: A review. Surface Science, 47, 384–402.

    Article  ADS  Google Scholar 

  72. Bromberg, L., Cohn, D. R., Rabinovich, A., & Alexeev, N. (1999). Plasma catalytic reforming of methane. International Journal of Hydrogen Energy, 24, 1131–1137.

    Article  Google Scholar 

  73. Petitpas, G., Rolloer, J.-D., Darmon, A., Gonzalez-Aguilar, J., Metkemeijer, R., & Fulcheri, L. (2007). A comparative study of non-thermal plasma assisted reforming technologies. International Journal of Hydrogen Energy, 32, 2848–2867.

    Article  Google Scholar 

  74. Whitehead, J. C. (2010). Plasma catalysis: A solution for environmental problems. Pure and Applied Chemistry, 82, 1329–1336.

    Article  Google Scholar 

  75. Durme, J. V., Dewulf, J., Leys, C., & Langenhove, H. V. (2008). Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review. Applied Catalysis B: Environmental, 78, 324–333.

    Google Scholar 

  76. Neyts, E. C., & Bogaerts, A. (2014). Understanding plasma catalysis through modelling and simulation—A review. Journal of Physics D: Applied Physics, 47, 224010.

    Article  ADS  Google Scholar 

  77. Oguchi, H., Kanai, H., Utani, K., Matsumura, Y., & Imamura, S. (2005). Cu2O as active species in the steam reforming of methanol by CuO/ZrO2 catalysts. Applied Catalysis A: General, 293, 64–70.

    Article  Google Scholar 

  78. Yang, H.-M., & Liao, P.-H. (2007). Preparation and activity of Cu/ZnO-CNTs nano-catalyst on steam reforming of methanol. Applied Catalysis A: General, 317, 226–233.

    Article  Google Scholar 

  79. Jones, S. D., & Hagelin-Weaver, H. E. (2009). Steam reforming of methanol over CeO2-and ZrO2-promoted Cu-ZnO catalysts supported on nanoparticle Al2O3. Applied Catalysis B: Environmental, 90, 195–204.

    Article  Google Scholar 

  80. Matsumura, Y., & Ishibe, H. (2009). Selective steam reforming of methanol over silica-supported copper catalyst prepared by sol–gel method. Applied Catalysis B: Environmental, 86, 114–120.

    Article  Google Scholar 

  81. Li, D., Li, X., & Gong, J. (2016). Catalytic reforming of oxygenates: State of the art and future prospects. Chemical Reviews, 116, 11529–11653.

    Article  Google Scholar 

  82. Ogata, A., Kim, H. H., Futamura, S., Kushiyama, S., & Mizuno, K. (2004). Effects of catalysts and additives on fluorocarbon removal with surface discharge plasma. Applied Catalysis B: Environmental, 53, 175–180.

    Google Scholar 

  83. Tu, X., Gallon, H. J., & Whitehead, J. C. (2011). Electrical and spectroscopic diagnostics of a single-stage plasma-catalysis system: effect of packing with TiO2. Journal of Physics D: Applied Physics, 44, 482003.

    Article  Google Scholar 

  84. Song, L., Li, X., & Zheng, T. (2008). Onboard hydrogen production from partial oxidation of dimethyl ether by spark discharge plasma reforming. International Journal of Hydrogen Energy, 33, 5060–5065.

    Article  Google Scholar 

  85. Zou, J.-J., Zhang, Y.-p., & Liu, C.-J. (2007). Hydrogen production from partial oxidation of dimethyl ether using corona discharge plasma. International Journal of Hydrogen Energy, 32, 958–964.

    Article  Google Scholar 

  86. Xing-hu, L. I. (2010). Production of hydrogen-rich gas by plasma reforming of dimethyl ether. Journal of Fuel Chemistry and Technology, 38, 201–206.

    Article  Google Scholar 

  87. Pan, Y.-X., Han, Y., & Liu, C.-J. (2007). Pathways for steam reforming of dimethyl ether under cold plasma conditions: A DFT study. Fuel, 86, 2300–2307.

    Article  Google Scholar 

  88. Zou, J.-J., Zhang, Y.-P., & Liu, C.-J. (2007). Hydrogen production from dimethyl ether using corona discharge plasma. Journal of Power Sources, 163, 653–657.

    Article  ADS  Google Scholar 

  89. Jiménez, M., Rincón, R., Marinas, A., & Calzada, M. D. (2013). Hydrogen production from ethanol decomposition by a microwave plasma: Influence of the plasma gas flow. International Journal of Hydrogen Energy, 38, 8708–8719.

    Google Scholar 

  90. Demidiouk, V., & Chae, J. O. (2005). Decomposition of volatile organic compounds in plasma-catalytic system. IEEE Transactions on Plasma Science, 33, 157–161.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae Hoon Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, D.H. (2019). Plasma-Catalytic Reforming of Alcohols. In: Tu, X., Whitehead, J., Nozaki, T. (eds) Plasma Catalysis. Springer Series on Atomic, Optical, and Plasma Physics, vol 106. Springer, Cham. https://doi.org/10.1007/978-3-030-05189-1_10

Download citation

Publish with us

Policies and ethics