Skip to main content

Numerical Methods for Mean-Field and Moment Models for Pedestrian Flow

  • Chapter
  • First Online:
Crowd Dynamics, Volume 1

Abstract

Pedestrian flow modelling has attracted the interest of a large number of scientists from different research fields, as well as planners and designers. While planning the architecture of buildings, one might be interested in the pedestrian flow around their intended design so that shops, entrances, corridors, emergency exits and seating can be placed at the best locations. Pedestrian models are helpful in improving efficiency and safety in public places such as airport terminals, train stations, theatres and shopping malls. They are not only used as a tool for understanding pedestrian dynamics at public places but also support transportation planners or managers to design timetables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Amadoria, M. Di Francesco, The one-dimensional Hughes model for pedestrian flow: Riemann-type solutions, Acta Mathematica Scientia, 32 (2012) 259–280.

    Article  MathSciNet  Google Scholar 

  2. A. Aw and M. Rascle, Resurrection of second order models of traffic flow, SIAM J. Appl. Math., 60 (2000), pp. 916–938.

    Article  MathSciNet  Google Scholar 

  3. N. Bellomo, C. Dogbe, On the Modeling of Traffic and Crowds: A Survey of Models, Speculations, and Perspectives, SIAM Review 53 (2011) 409–463.

    MathSciNet  MATH  Google Scholar 

  4. N. Bellomo, A. Bellouquid, On the modeling of crowd dynamics: Looking at the beautiful shapes of swarms, Netw. Heterog. Media, 6 (2011) 383–99.

    Article  MathSciNet  Google Scholar 

  5. N. Bellomo, A. Bellouquid, D. Knopoff, From the microscale to collective crowd dynamics, SIAM J. Multiscale Model. Simul. 11 (2013) 943–963.

    Article  MathSciNet  Google Scholar 

  6. N. Bellomo, C. Dogbe, On the modelling crowd dynamics from scaling to hyperbolic macroscopic models, Math. Models Methods Appl. Sci. 18 (2008) 1317–1345.

    Article  MathSciNet  Google Scholar 

  7. N. Bellomo, B. Piccoli, A. Tosin, Modeling crowd dynamics from a complex system viewpoint, Math. Models Methods Appl. Sci. 22 (2012) 1230004.

    Article  MathSciNet  Google Scholar 

  8. T. Belytschko, Y. Guo, W. Liu, S.P. Xiao, A unified stability analysis of meshless particle methods, Int. J. Numer. Meth. Engng. 48 (2000) 1359–1400.

    Article  MathSciNet  Google Scholar 

  9. R. Borsche, A. Klar, S. Kühn, A. Meurer, Coupling traffic flow networks to pedestrian motion, Math. Methods Models Appl. Sci. 24 (2), 359–380, 2014

    Article  MathSciNet  Google Scholar 

  10. T. Brunner, Forms of approximate radiation transport, SAND2002-1778, Sandia National Laboratory

    Google Scholar 

  11. J.A. Cañizo, J.A. Carrillo, J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion, Math. Models Methods Appl. Sci. 21 (2011) 515–539.

    Article  MathSciNet  Google Scholar 

  12. J.A. Carrillo, M.R. D’Orsogna, V. Panferov, Double milling in self-propelled swarms from kinetic theory, Kinetic and Related Models 2 (2009) 363–378.

    Article  MathSciNet  Google Scholar 

  13. J. A. Carrillo, A. Klar, S. Martin, S. Tiwari, Self-propelled interacting particle systems with roosting force, Math. Models Methods Appl. Sci. 20 (2010) 1533–1552.

    Article  MathSciNet  Google Scholar 

  14. L. Cheng, V. Reddy, C. Fookes, and P. K. D. V. Yarlagadda, Impact of passenger group dynamics on an airport evacuation process using an agent-based model, International Conference on Computational Science and Computational Intelligence, Las Vegas, Nevada, USA (2014).

    Google Scholar 

  15. M.L. Chu, P. Parigi, K. Law, J.-C. Latombe, Modeling social behaviors in an evacuation simulator, Computer animation and virtual worlds, Comp. Anim. Virtual Worlds 2014; 25:375–384

    Article  Google Scholar 

  16. Y.L. Chuang, M.R. D’Orsogna, D. Marthaler, A.L. Bertozzi, L. Chayes, State transitions and the continuum limit for a 2D interacting, self-propelled particle system, Physica D 232 (2007) 33–47.

    Article  MathSciNet  Google Scholar 

  17. R. Colombo, M. Garavello, M. Lecureux-Mercier, A Class of Non-Local Models for Pedestrian Traffic, Math. Models Methods Appl. Sci. 22 (2012) 1150023.

    Article  MathSciNet  Google Scholar 

  18. R. Colombo, M. Garavello, M. Lecureux-Mercier, Non-local crowd dynamics, Comptes Rendus Mathmatique 349 (2011) 769–772.

    Article  MathSciNet  Google Scholar 

  19. R. Colombo, M. Rosini, Pedestrian flows and non-classical shocks, Math. Models Methods Appl. Sci. 28 (2005) 1553–1567.

    Article  MathSciNet  Google Scholar 

  20. J.F. Coulombel, F. Golse, T. Goudon, Diffusion approximation and entropy based moment closure for kinetic equations, Asymptotic Analysis, 45 (2005) 1–39.

    MathSciNet  MATH  Google Scholar 

  21. P. Degond, C. Appert-Rolland, M. Moussaid, J. Pettre, G. Theraulaz, A hierarchy of heuristic-based models of crowd dynamics, J. Stat. Phys. 152 (2013) 1033–1068.

    Article  MathSciNet  Google Scholar 

  22. P. Degond, C. Appert-Rolland, J. Pettre, G. Theraulaz, Vision-based macroscopic pedestrian models, Kinetic and Related models, AIMS 6, 4, (2013), 809–839

    Article  MathSciNet  Google Scholar 

  23. P. Degond, S. Motsch, Continuum limit of self-driven particles with orientation interaction, Math. Models Methods Appl. Sci. 18 (2008) 1193–1215.

    Article  MathSciNet  Google Scholar 

  24. P. Degond, F.J. Mustieles, Approximation of diffusion equations by deterministic convections of particles, SIAM J. on Scientific and Statistical Computing 11 (1990) 293–310.

    Article  MathSciNet  Google Scholar 

  25. G.A. Dilts, Moving-least-squares-particle hydrodynamics: I. Consistency and stability, Int. J. Numer. Meth. Engng 44 (1999) 1115–1155.

    Article  MathSciNet  Google Scholar 

  26. R Etikyala, S Göttlich, A Klar, and S Tiwari. Particle methods for pedestrian flow models: From microscopic to nonlocal continuum models. Mathematical Models and Methods in Applied Sciences, 20(12), 2503–2523, 2014.

    Article  MathSciNet  Google Scholar 

  27. M. Di Francesco, P.A. Markowich, J.F. Pietschmann, M.T. Wolfram, On the Hughes model for pedestrian flow: The one-dimensional case, J. Differential Equations 250 (2011) 1334–1362.

    Article  MathSciNet  Google Scholar 

  28. R.A. Gingold, J.J. Monaghan, Smoothed Particle Hydrodynamics: theory and application to non-spherical stars, Mon. Not. Roy. Astron. Soc. 181 (1977) 375–389.

    Article  Google Scholar 

  29. M. Frank, H. Hensel, A. Klar, A fast and accurate moment method for the Fokker-Planck equation and applications to electron radiotherapy, SIAM Journal on Applied Mathematics 67, 582–603, 2007

    Article  MathSciNet  Google Scholar 

  30. S.Y. Ha, E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinetic and Related Models 1 (2008) 415–435.

    Article  MathSciNet  Google Scholar 

  31. E.T., Hall, The Hidden Dimension. Anchor Books. ISBN 0-385-08476-5, 1966.

    Google Scholar 

  32. D. Helbing, Traffic and related self-driven many-particle systems, Rev. Modern Phys. 73 (2001) 1067–1141.

    Article  MathSciNet  Google Scholar 

  33. D. Helbing, A fluid dynamic model for the movement of pedestrians, Complex Systems 6 (1992) 391–415.

    MathSciNet  MATH  Google Scholar 

  34. D. Helbing, P. Molnar, Social force model for pedestrian dynamics, Phys. Rev. E 51 (1995) 4282–4286.

    Article  Google Scholar 

  35. D. Helbing, I.J. Farkas, P. Molnar, T. Vicsek, Simulation of pedestrian crowds in normal and evacuation situations, in: M. Schreckenberg, S.D. Sharma (Eds.), Pedestrian and Evacuation Dynamics, Springer-Verlag (2002) 21–58.

    Google Scholar 

  36. R.L. Hughes, A continuum theory for the flow of pedestrians, Transp. Res. Part B: Methodological 36 (6) (2002), pp. 507–535.

    Article  Google Scholar 

  37. R.L. Hughes, A continuum theory for the flow of pedestrians, Transp. Res. Part B: Methodological 36 (2002) 507–535.

    Article  Google Scholar 

  38. R.L. Hughes, The flow of human crowds, Annu. Rev. Fluid Mech. 35 (2003) 169–182.

    Article  MathSciNet  Google Scholar 

  39. D.P. Kennedy, J. Gläscher, J.M. Tyszka, R. Adolphs, Personal space regulation by the human amygdala. Nat Neurosci. 12, 1226–1227, 2009.

    Article  Google Scholar 

  40. C. v. Krüchten, A. Schadschneider, Empirical study on social groups in pedestrian evacuation dynamics, Physica A 475 (2017) 129–141

    Google Scholar 

  41. A. Klar, F. Schneider, O. Tse, Maximum entropy models for stochastic dynamic systems on the sphere and associated Fokker-Planck equations, Kinetic and Related Models (KRM) 7 (3), 509–529, 2014

    Google Scholar 

  42. A. Klar, S. Tiwari, A multi-scale meshfree particle method for macroscopic mean field interacting particle models, SIAM Multiscale Mod. Sim. 12, 3, 2014

    Google Scholar 

  43. A. Klar, S. Tiwari, A multi-scale particle method for mean field equations: the general case, https://arxiv.org/abs/1705.03324

  44. G. Koester, F. Treml, M. Seitz, and W. Klein, Validation of crowd models including social groups. In Ulrich Weidmann, Uwe Kirsch, and Michael Schreckenberg, editors, Pedestrian and Evacuation Dynamics 2012, 1051–1063. Springer International Publishing, 2014.

    Google Scholar 

  45. A.E. Kremyzas, Social Group Behavior and Path Planning, Master Thesis, University Utrecht

    Google Scholar 

  46. C.D. Levermore, Relating Eddington factors to flux limiters, J. Quant. Spectrosc. Radiat. Transf. 31 (1984) 149–160.

    Article  Google Scholar 

  47. H. Ling, S.C. Wong, M. Zhang, C.H. Shu, W.H.K. Lam, Revisiting Hughes dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm, Transp. Res. Part B: Methodological 43 (2009) 127–141.

    Article  Google Scholar 

  48. N.K. Mahato, A. Klar, S. Tiwari, Particle methods for multi-group pedestrian flow, Appl. Math. Modeling 53, 447–461, 2018

    Article  MathSciNet  Google Scholar 

  49. S. Mas-Gallic, P. Raviart, A particle method for first-order symmetric systems, Numerische Mathematik 51 (1987) 323–352.

    Article  MathSciNet  Google Scholar 

  50. B. Maury, A. Roudneff-Chupin, F. Santambrogio, A macroscopic crowd motion model of the gradient-flow type, Math. Models Methods Appl. Sci. 20 (2010) 1787–1821.

    Article  MathSciNet  Google Scholar 

  51. L. Müller, A. Meurer, F. Schneider, A. Klar, A numerical investigation of flux-limited approximations for pedestrian dynamics, M3AS 27 (6), 1177–1197, 2017

    MATH  Google Scholar 

  52. A. Mogilner, L. Edelstein-Keshet, L. Bent, A. Spiros, Mutual interactions, potentials, and individual distance in a social aggregation, J. Math. Biol. 47 (2003) 353–389.

    Article  MathSciNet  Google Scholar 

  53. M. Moussaid, N. Perozo, S. Garnier, D. Helbing, and G. Theraulaz, Walking Behaviour of Pedestrian Social Groups and Its Impact on Crowd Dynamics, PLoS ONE, 5(4), e10047(2010).

    Article  Google Scholar 

  54. S. Osher and J. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations, J. Comput. Phys. 79 (1988) 12–49.

    Article  MathSciNet  Google Scholar 

  55. J. Ondrej, J. Pettre, A.H. Olivier, S. Donikian, A synthetic-vision based steering approach for crowd simulation, ACM Transactions on Graphics, 29, 4, Article 123 (2010)

    Google Scholar 

  56. B. Piccoli, A. Tosin, Pedestrian flows in bounded domains with obstacles, Contin. Mech. Thermodyn. 21 (2009) 85–107.

    Article  MathSciNet  Google Scholar 

  57. F. Schneider, G. Alldredge, M. Frank, A. Klar, Higher Order Mixed-Moment Approximations for the Fokker–Planck Equation in One Space Dimension, SIAM Journal on Applied Mathematics 74 (4), 1087–1114, 2014

    Article  MathSciNet  Google Scholar 

  58. H. Spohn, Large scale dynamics of interacting particles. Texts and Monographs in Physics, Springer (1991).

    Book  Google Scholar 

  59. J. A. Sethian, Fast Marching Methods, SIAM Review 41 (1999) 199–235.

    Article  MathSciNet  Google Scholar 

  60. S. Tiwari, J. Kuhnert, Modelling of two-phase flow with surface tension by Finite Point-set method (FPM), J. Comp. Appl. Math. 203 (2007) 376–386.

    Article  Google Scholar 

  61. S. Tiwari, J. Kuhnert, Finite pointset method based on the projection method for simulations of the incompressible Navier-Stokes equations, M. Griebel, M. A. Schweitzer (Eds.), Springer LNCSE: Meshfree Methods for Partial Differential Equations, Springer-Verlag 26 (2003) 373–387.

    Google Scholar 

  62. S. Tiwari, A. Klar, S. Hardt, A particle-particle hybrid method for kinetic and continuum equations, JCP 228 (2009) 7109–7124.

    Article  MathSciNet  Google Scholar 

  63. E. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (Springer, 2009).

    Book  Google Scholar 

  64. A. Treuille, S. Cooper, Z. Popovic, Continuum crowds, in: ACM Transaction on Graphics, Proceedings of SCM SIGGRAPH 25 (2006) 1160–1168.

    Article  Google Scholar 

  65. J. Xi, X. Zou, Z. Chen, J. Huang, Multi-pattern of Complex Social Pedestrian Groups Transportation Research Procedia Volume 2, 2014, 60–68

    Google Scholar 

  66. H.P. Zhu, A.B. Yu, Averaging method of granular materials, Phys. Rev. E 66 (2002) 021302.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the German Research Foundation, DFG grant KL 1105/20-1, and by the DAAD PhD programme MIC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Schneider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Borsche, R., Klar, A., Schneider, F. (2018). Numerical Methods for Mean-Field and Moment Models for Pedestrian Flow. In: Gibelli, L., Bellomo, N. (eds) Crowd Dynamics, Volume 1. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-05129-7_7

Download citation

Publish with us

Policies and ethics