Skip to main content

Dynamics of Cerebrospinal Fluid: From Theoretical Models to Clinical Applications

  • Chapter
  • First Online:
Biomechanics of the Brain

Abstract

Quantitative assessment of CSF dynamics may support clinical intuition with a description of the CSF circulatory and compensatory dysfunction, particularly when both clinical and imaging evidence is subtle and ambiguous. For normal pressure hydrocephalus (NPH), the consensus regarding the use of physiological parameters in conjunction with clinical and imaging information is still uncertain, despite guidelines for the management of NPH published some time ago. Main trouble was that they have never been based on sufficiently hard clinical and experimental evidence. Current range of clinical applications for CSF dynamics testing includes hydrocephalus, idiopathic intracranial hypertension, craniosynostosis, traumatic brain injury – in the latter useful in differentiating post-traumatic hydrocephalus from atrophy and assessing CSF pathways following decompressive craniectomy. From the viewpoint of clinical diagnosis and modelling, three techniques are particularly useful: infusion test, overnight ICP monitoring, and non-invasive detection of CSF movement using phase-coded MRI. These techniques are described and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stein, S.C., Burnett, M.G., Sonnad, S.S.: Shunts in normal pressure hydrocephalus: do we place too many or too few? J. Neurosurg. 105, 815–822 (2006)

    Article  Google Scholar 

  2. Marmarou, A., Black, P., Bergsneider, M., P. Klinge & N. Relkin, International NPH Consultant Group: Guidelines for management of idiopathic normal pressure hydrocephalus: progress to date. Acta Neurochir. Suppl. 95, 237–240 (2005)

    Google Scholar 

  3. Pickard, J.D., Spiegelhalter, D., Czosnyka, M.: Health economics and the search for shunt-responsive symptomatic hydrocephalus in the elderly. J. Neurosurg. 105, 811–814 (2006)

    Article  Google Scholar 

  4. Drake, J.M., Saint-Rose, C.H. (eds.): Shunt complications. In: The Shunt Book, pp. 23–92. Blackwell Science, Oxford (1995)

    Google Scholar 

  5. Czosnyka, M., Maksymowicz, W., Batorski, L., Koszewski, W., Czosnyka, Z.: Comparison between classic differential and automatic shunt functioning on the basis of infusion tests. Acta Neurochir. 106, 1–8 (1990)

    Article  Google Scholar 

  6. Maksymowicz, W., Czosnyka, M., Koszewski, W., Szymanska, O., Zabolotny, W.: Post shunting improvement in hydro-cephalic patients described by cerebrospinal compensatory parameters. In: Avezaat, C.J.J., van Eijndhoven, J.H.M., Maas, A.I.R., Tans, J.T.J. (eds.) Intracranial Pressure VIII, pp. 829–832. Springer, Berlin (1994)

    Google Scholar 

  7. Maksymowicz, W., Czosnyka, M., Koszewski, W., Szymanska, A., Traczewski, W.: The role of cerebrospinal system compensatory parameters in estimation of functioning of implanted shunt system in patients with communicating hydrocephalus. Acta Neurochir. 101, 112–116 (1989)

    Article  Google Scholar 

  8. Petrella, G., Czosnyka, M., Keong, N., Pickard, J.D., Czosnyka, Z.: How does CSF dynamics change after shunting? Acta Neurol. Scand. 118(3), 182–188 (2008)

    Article  Google Scholar 

  9. Sorenson, P.S., Gjerris, F., Schmidt, J.: Resistance to CSF outflow in benign intracranial hyper-tension (pseudotumor cerebri). In: Gjerris, F., Borgesen, S.E., Sorensen, P.S. (eds.) Outflow of Cerebrospinal Fluid, pp. 343–355. Munskgaard, Copenhagen (1989)

    Google Scholar 

  10. Tans, J.T., Boon, A.J., Study Group: How to select patients with normal pressure hydrocephalus for shunting. Acta Neurochir. Suppl. 81, 3–5 (2002)

    Google Scholar 

  11. Czosnyka, M., Copeman, J., Czosnyka, Z., McConnell, R., Dickinson, C., Pickard, J.D.: Post-traumatic hydrocephalus: influence of craniectomy on the CSF circulation. J. Neurol. Neurosurg. Psychiatry. 68, 246–247 (2000)

    Article  Google Scholar 

  12. May, C., Kaye, J.A., Atack, J.R., Schapiro, M.B., Friedland, R.P., Rapoport, S.I.: Cerebrospinal fluid production is reduced in healthy aging. Neurology. 40, 500–503 (1990)

    Article  Google Scholar 

  13. Manet, R., Fabre, N., Moyse, E., Laurent, B., Schmidt, E.A.: Intracranial hypertension is painless! Acta Neurochir. Suppl. 122, 275–277 (2016)

    Article  Google Scholar 

  14. Davson, H., Welch, K., Segal, M.B.: The Physiology and Pathophysiology of Cerebrospinal Fluid. Churchill Livingstone, New York (1987)

    Google Scholar 

  15. Lalou, A.D., Levrini, V., Garnett, M., Nabbanja, E., Kim, D.J., Gergele, L., Bjornson, A., Czosnyka, Z., Czosnyka, M.: Validation of Davson’s equation in patients suffering from idiopathic normal pressure hydrocephalus. Acta Neurochir. (Wien). 160(5), 1097–1103 (2018)

    Article  Google Scholar 

  16. Gjerris, F., Borgesen, S.E.: Pathophysiology of CSF circulation. In: Crockard, A., Hayward, A., Hoff, J.T. (eds.) Neurosurgery. The Scientific Basis of Clinical Practice, pp. 146–174. Blackwell Scientific, Oxford (1992)

    Google Scholar 

  17. Momjian, S., Owler, B.K., Czosnyka, Z., Czosnyka, M., Pena, A., Pickard, J.D.: Pattern of white matter regional cerebral blood flow and autoregulation in normal pressure hydrocephalus. Brain. 127(pt 5), 965–972 (2004)

    Article  Google Scholar 

  18. Stoquart-ElSankari, S., Lehmann, P., Villette, A., Czosnyka, M., Meyer, M.E., Deramond, H., Baledent, O.: A phase-contrast MRI study of physio-logical cerebral venous flow. J. Cereb. Blood Flow Metab. 29, 1208–1215 (2009)

    Article  Google Scholar 

  19. Bradley Jr., W.G., Whittemore, A.R., Kortman, K.E., Watanabe, A.S., Homyak, M., Teresi, L.M., Davis, S.J.: Marked cerebrospinal fluid void: indicator of successful shunt in patients with suspected normal-pressure hydrocephalus. Radiology. 178(2), 459–466 (1991)

    Article  Google Scholar 

  20. Egnor, M., Zheng, L., Rosiello, A., Gutman, F., Davis, R.: A model of pulsations in communicating hydro-cephalus. Pediatr. Neurosurg. 36(6), 281–303 (2002)

    Article  Google Scholar 

  21. Eide, P.K.: Intracranial pressure parameters in idiopathic normal pressure hydrocephalus patients treated with ventriculo-peritoneal shunts. Acta Neurochir. 148(1), 21–29 (2006)

    Article  MathSciNet  Google Scholar 

  22. Nedergaard, M.: Neuroscience. Garbage truck of the brain. Science. 340(6140), 1529–1530 (2013)

    Article  ADS  Google Scholar 

  23. Orešković, D., Radoš, M., Klarica, M.: New concepts of cerebrospinal fluid physiology and development of hydrocephalus. Pediatr. Neurosurg. 52(6), 417–425 (2017)

    Article  Google Scholar 

  24. Manet, R., Payen, J.F., Gergelé, L.: Using external lumbar CSF drainage to treat communicating external hydrocephalus in adult patients after acute traumatic or non-traumatic brain injury. Acta Neurochir. 159(10), 2003–2009 (2017)

    Article  Google Scholar 

  25. Marmarou, A., Foda, M.A., Bandoh, K.: Posttraumatic ventriculomegaly: hydrocephalus or atrophy? A new approach for diagnosis using CSF dynamics. J. Neurosurg. 85(6), 1026–1035 (1996)

    Article  Google Scholar 

  26. Huh, P.W., Yoo, D.S., Cho, K.S., Park, C.K., Kang, S.G., Park, Y.S., Kim, D.S., Kim, M.C.: Diagnostic method for differentiating external hydrocephalus from simple subdural hygroma. J. Neurosurg. 105(1), 65–70 (2006)

    Article  Google Scholar 

  27. Nakae, S., Murayama, K., Adachi, K., Kumai, T., Abe, M., Hirose, Y.: Novel application of time-spatial labeling inversion pulse magnetic resonance imaging for diagnosis of external hydrocephalus. World Neurosurg. 109, 197–201 (2018)

    Article  Google Scholar 

  28. Zanini, M.A., de Lima Resende, L.A., de Souza Faleiros, A.T., Gabarra, R.C.: Traumatic subdural hygromas: proposed pathogenesis-based classification. J. Trauma. 64(3), 705–713 (2008)

    Article  Google Scholar 

  29. Yoshimoto, Y., Wakai, S., Hamano, M.: External hydrocephalus after aneurysm surgery: paradoxical response to ventricular shunting. J. Neurosurg. 88(3), 485–489 (1998)

    Article  Google Scholar 

  30. Tzerakis, N., Orphanides, G., Antoniou, E., Sioutos, P.J., Lafazanos, S., Seretis, A.: Subdural effusions with hydrocephalus after severe head injury: successful treatment with ventriculoperitoneal shunt placement: report of 3 adult cases. Case Rep. Med. 2010, 743784 (2010)

    Article  Google Scholar 

  31. Marmarou, A., Shulman, K., Rosende, R.M.: A non-linear analysis of CSF system and intracranial pressure dynamics. J. Neurosurg. 48, 332–344 (1978)

    Article  Google Scholar 

  32. Avezaat, C.J.J., Eijndhoven, J.H.M.: Cerebrospinal fluid pulse pressure and craniospinal dynamics. A theoretical, clinical and experimental study (thesis). Jongbloedrr A, The Hague (1984)

    Google Scholar 

  33. Sliwka, S.: A clinical system for the evaluation of selected dynamic properties of the intracranial system. PhD Thesis, Polish Academy of Sciences, Warsaw (in Polish) (1980)

    Google Scholar 

  34. Boon, A.J., Tans, J.T., Delwel, E.J., Egeler-Peerdeman, S.M., Hanlo, P.W., Wurzer, H.A., Avezaat, C.J., de Jong, D.A., Gooskens, R.H., Hermans, J.: Dutch normal-pressure hydrocephalus study: prediction of outcome after shunting by resistance to outflow of cerebrospinal fluid. J. Neurosurg. 87(5), 687–693 (1997)

    Article  Google Scholar 

  35. Borgesen, S.E., Gjerris, F.: The predictive value of conductance to outflow of CSF in normal pressure hydrocephalus. Brain. 105, 65–86 (1982)

    Article  Google Scholar 

  36. Ekstedt, J.: CSF hydrodynamic studies in man. Method of constant pressure CSF infusion. J. Neurol. Neurosurg. Psychiatry. 40, 105–119 (1977)

    Article  Google Scholar 

  37. Frieden, H., Ekstedt, J.: Instrumentation for cerebrospinal fluid hydrodynamic studies in man. Med. Biol. Eng. Comput. 20, 167–180 (1982)

    Article  Google Scholar 

  38. Jurkiewicz, J., Czernicki, Z., Berdyga, J., Uchman, G.: Three-phase infusion test. Neurol. Neurochir. Pol. 28, 363–369 (1994)

    Google Scholar 

  39. Katzman, R., Hussey, F.: A simple constant infusion manometric test for measurement of CSF absorption. Neurology. 20, 534–544 (1970)

    Article  Google Scholar 

  40. Tisell, M., Edsbagge, M., Stephensen, H., Czosnyka, M., Wikkelso, C.: Elastance correlates with outcome after endo-scopic third ventriculostomy in adults with hydrocephalus caused by primary aqueductal stenosis. Neurosurgery. 50, 70–76 (2002)

    Google Scholar 

  41. Tans, J.T., Poortvliet, D.C.: Relationship between compliance and resistance to outflow of CSF in adult hydrocephalus. J. Neurosurg. 71(1), 59–62 (1989)

    Article  Google Scholar 

  42. Borgesen, S.E., Gjerris, F., Sorensen, S.C.: The resistance to cerebrospinal fluid absorption in humans: a method of evaluation by lumbo-ventricular perfusion, with particular reference to normal pressure hydrocephalus. Acta Neurol. Scand. 57, 88–96 (1978)

    Article  Google Scholar 

  43. Borgesen, S.E., Albeck, M.J., Gjerris, F., Czosnyka, M., Laniewski, P.: Computerized infusion test compared to steady pressure constant infusion test in measurement of resistance to CSF outflow. Acta Neurochir. 119, 12–16 (1992)

    Article  Google Scholar 

  44. Czosnyka, M., Batorski, L., Laniewski, P., Maksymowicz, W., Koszewski, W., Zaworski, W.: A computer system for the identification of the cerebrospinal compensatory model. Acta Neurochir. 105, 112–116 (1990)

    Article  Google Scholar 

  45. Czosnyka, M., Czosnyka, Z., Momjian, S., Pickard, J.D.: Cerebrospinal fluid dynamics. Physiol. Meas. 25, R51–R76 (2004)

    Article  ADS  Google Scholar 

  46. Schuhmann, M.U., Sood, S., McAllister, J.P., Jaeger, M., Ham, S.D., Czosnyka, Z., Czosnyka, M.: Value of overnight monitoring of intracranial pressure in hydrocephalic children. Pediatr. Neurosurg. 44(4), 269–279 (2008)

    Article  Google Scholar 

  47. Antes, S., Stadie, A., Müller, S., Linsler, S., Breuskin, D., Oertel, J.: Intracranial pressure-guided shunt valve adjustments with the Miethke sensor reservoir. World Neurosurg. 109, e642 (2018)

    Article  Google Scholar 

  48. Welschehold, S., Schmalhausen, E., Dodier, P., Vulcu, S., Oertel, J., Wagner, W., Tschan, C.A.: First clinical results with a new telemetric intracranial pressure-monitoring system. Neurosurgery. 70(1 Suppl Operative), 44–49 (2012).; discussion 49

    Google Scholar 

  49. Owler, B.K., Fong, K.C., Czosnyka, Z.: Importance of ICP monitoring in the investigation of CSF circulation disorders. Br. J. Neurosurg. 15(5), 439–440 (2001)

    Article  Google Scholar 

  50. Czosnyka, M., Whitehouse, H., Smielewski, P., Simac, S., Pickard, J.D.: Testing of cerebrospinal compensatory reserve in shunted and non-shunted patients: a guide to interpretation based on an observational study. J. Neurol. Neurosurg. Psychiatry. 60, 549–558 (1996)

    Article  Google Scholar 

  51. Sklar, F.H., Beyer, C.W., Ramanathan, M., Elashvili, I., Cooper, P.R., Clark, W.K.: Servo-controlled lumbar infusions: a clinical tool for determination of CSF dynamics as a function of pressure. Neurosurgery. 3, 170–178 (1978)

    Article  Google Scholar 

  52. Eide, P.K., Brean, A.: Intracranial pulse pressure amplitude levels determined during pre-operative assessment of subjects with possible idiopathic normal pressure hydrocephalus. Acta Neurochir. 148(11), 1151–1156 (2006).; discussion 1156

    Article  Google Scholar 

  53. Qvarlander, S., Lundkvist, B., Koskinen, L.-O.D., Malm, J., Eklund, A.: Pulsatility in CSF dynamics: pathophysiology of idiopathic normal pressure hydrocephalus. J. Neurol. Neurosurg. Psychiatry. 84(7), 735–741 (2013)

    Article  Google Scholar 

  54. Czosnyka, Z.H., Lalou, A.D., Nabanja, E., Pickard, J.D., Garnett, M., Keong, N.C., Schmidt, E.A., Kim, D.J., Czosnyka, M.: Lower breakpoint of intracranial amplitude-pressure relationship in NPH. Fluids Barriers CNS. 15(Suppl 1), A31 (2018)

    Google Scholar 

  55. Kasprowicz, M., Czosnyka, M., Czosnyka, Z., Momjian, S., Smielewski, P., Juniewicz, H., Pickard, J.D.: Hysteresis of the cerebrospinal pressure-volume curve in hydrocephalus. Acta Neurochir. Suppl. 86, 529–532 (2003)

    Google Scholar 

  56. Eide, P.K.: A new method for processing of continuous intracranial pressure signals. Med. Eng. Phys. 28(6), 579–587 (2006)

    Article  Google Scholar 

  57. Lundberg, N.: Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr. Scand. Suppl. 36(149), 1–193 (1960)

    Google Scholar 

  58. Pickard, J.D., Teasdale, G., Matheson, M., Lindsay, K., Galbraith, S., Wyper, D., Macpherson, P.: Intraventricular pressure waves – the best predictive test for shunting in normal pressure hydrocephalus. In: Shulman, K., Marmarou, A., Miller, J.D., Becker, D.P., Hochwald, D.M., Brock, M. (eds.) Intracranial Pressure IV, pp. 498–500. Springer, Berlin (1980)

    Chapter  Google Scholar 

  59. Droste, D.W., Krauss, J.K.: Intracranial pressure B-waves precede corresponding arterial blood pressure oscillations in patients with suspected normal pressure hydrocephalus. Neurol. Res. 21(7), 627–630 (1999)

    Article  Google Scholar 

  60. Piper, I.R., Miller, J.D., Whittle, I.R., Lawson, A.: Automated time-averaged analysis of craniospinal compliance (short pulse response). Acta Neurochir. Suppl. 51, 387–390 (1990)

    Google Scholar 

  61. Kim, D.J., Czosnyka, Z., Keong, N., Radolovich, D.K., Smielewski, P., Sutcliffe, M.P., Pickard, J.D., Czosnyka, M.: Index of cerebrospinal compensatory reserve in hydrocephalus. Neurosurgery. 64(3), 494–501 (2009)

    Article  Google Scholar 

  62. Baledent, O., Gondry-Jouet, C., Stoquart-Elsankari, S., Bouzerar, R., Le Gars, D., Meyer, M.E.: Value of phase contrast magnetic resonance imaging for investigation of cerebral hydrodynamics. J. Neuroradiol. 33(5), 292–303 (2006)

    Article  Google Scholar 

  63. Baledent, O., Henry-Feugeas, M.C., Idy-Peretti, I.: Cerebrospinal fluid dynamics and relation with blood flow: a magnetic resonance study with semiautomated cerebrospinal fluid segmentation. Investig. Radiol. 36(7), 368–377 (2001)

    Article  Google Scholar 

  64. Bhadelia, R.A., Bogdan, A.R., Kaplan, R.F., Wolpert, S.M.: Cerebrospinal fluid pulsation amplitude and its quantitative relationship to cerebral blood flow pulsations: a phase-contrast MR flow imaging study. Neuroradiology. 39(4), 258–264 (1997)

    Article  Google Scholar 

  65. Stoquart-El Sankari, S., Lehmann, P., Gondry-Jouet, C., Fichten, A., Godefroy, O., Meyer, M.E., Baledent, O.: Phase-contrast MR imaging support for the diagnosis of aqueductal stenosis. AJNR Am. J. Neuroradiol. 30(1), 209–214 (2009)

    Article  Google Scholar 

  66. Stoquart-ElSankari, S., Baledent, O., Gondry-Jouet, C., Makki, M., Godefroy, O., Meyer, M.E.: Aging effects on cerebral blood and cerebrospinal fluid flows. J. Cereb. Blood Flow Metab. 27(9), 1563–1572 (2007)

    Article  Google Scholar 

  67. Marmarou, A., Schulman, K., LaMorgese, J.: Compartmental analysis of compliance and outflow resistance of cerebrospinal fluid system. J. Neurosurg. 43, 523–534 (1975)

    Article  Google Scholar 

  68. Enzmann, D.R., Pelc, N.J.: Cerebrospinal fluid flow measured by phase-contrast cine MR. AJNR Am. J. Neuroradiol. 14(6), 1301–1307; discussion 1309–1310 (1993)

    Google Scholar 

  69. Greitz, D., Wirestam, R., Franck, A., Nordell, B., Thomsen, C., Stahlberg, F.: Pulsatile brain movement and associated hydrodynamics studied by magnetic resonance phase imaging. The Monro-Kellie doctrine revisited. Neuroradiology. 34(5), 370–380 (1992)

    Article  Google Scholar 

  70. Henry-Feugeas, M.C., Idy-Peretti, I., Baledent, O., Poncelet-Didon, A., Zannoli, G., Bittoun, J., Schouman-Claeys, E.: Origin of subarachnoid cerebrospinal fluid pulsations: a phase-contrast MR analysis. Magn. Reson. Imaging. 18(4), 387–395 (2000)

    Article  Google Scholar 

  71. Wagshul, M.E., Chen, J.J., Egnor, M.R., McCormack, E.J., Roche, P.E.: Amplitude and phase of cerebrospinal fluid pulsations: experimental studies and review of the literature. J. Neurosurg. 104(5), 810–819 (2006)

    Article  Google Scholar 

  72. Feinberg, D.A., Crooks, L.E., Sheldon, P., Hoenninger 3rd, J., Watts, J., Arakawa, M.: Magnetic resonance imaging the velocity vector components of fluid flow. Magn. Reson. Med. 2(6), 555–566 (1985)

    Article  Google Scholar 

  73. Henry-Feugeas, M.C., Idy-Peretti, I., Blanchet, B., Hassine, D., Zannoli, G., Schouman-Claeys, E.: Temporal and spatial assessment of normal cerebrospinal fluid dynamics with MR imaging. Magn. Reson. Imaging. 11(8), 1107–1118 (1993)

    Article  Google Scholar 

  74. Nayler, G.L., Firmin, D.N., Longmore, D.B.: Blood flow imaging by cine magnetic resonance. J. Comput. Assist. Tomogr. 10(5), 715–722 (1986)

    Article  Google Scholar 

  75. Baledent, O., Gondry-Jouet, C., Meyer, M.E., De Marco, G., Le Gars, D., Henry-Feugeas, M.C., Idy-Peretti, I.: Relationship between cerebrospinal fluid and blood dynamics in healthy volunteers and patients with communicating hydrocephalus. Investig. Radiol. 39(1), 45–55 (2004)

    Article  Google Scholar 

  76. Bateman, G.A.: Vascular compliance in normal pressure hydrocephalus. AJNR Am. J. Neuroradiol. 21(9), 1574–1585 (2000)

    Google Scholar 

  77. Bradley, W., Scalzo, D., Queralt, J., Nitz, W.N., Atkinson, D.J., Wong, P.: Normal-pressure hydrocephalus: evaluation with cerebrospinal fluid flow measurements at MR imaging. Radiology. 198(2), 523–529 (1996)

    Article  Google Scholar 

  78. Luetmer, P.H., Huston, J., Friedman, J.A., Dixon, G.R., Petersen, R.C., Jack, C.R., McClelland, R.L., Ebersold, M.J.: Measurement of cerebrospinal fluid flow at the cerebral aqueduct by use of phase-contrast magnetic resonance imaging: technique validation and utility in diagnosing idiopathic normal pressure hydrocephalus. Neurosurgery. 50(3), 534–543; discussion 543–534 (2002)

    Google Scholar 

  79. Mase, M., Yamada, K., Banno, T., Miyachi, T., Ohara, S., Matsumoto, T.: Quantitative analysis of CSF flow dynamics using MRI in normal pressure hydrocephalus. Acta Neurochir. Suppl. 71, 350–353 (1998)

    Google Scholar 

  80. Buonocore, M.H., Bogren, H.: Factors influencing the accuracy and precision of velocity-encoded phase imaging. Magn. Reson. Med. 26(1), 141–154 (1992)

    Article  Google Scholar 

  81. Baledent, O., Fin, L., Khuoy, L., Ambarki, K., Gauvin, A.C., Gondry-Jouet, C., Meyer, M.E.: Brain hydrodynamics study by phase-contrast magnetic resonance imaging and transcranial color doppler. J. Magn. Reson. Imaging. 24(5), 995–1004 (2006)

    Article  Google Scholar 

  82. Enzmann, D.R., Ross, M.R., Marks, M.P., Pelc, N.J.: Blood flow in major cerebral arteries measured by phase-contrast cine MR. AJNR Am. J. Neuroradiol. 15(1), 123–129 (1994)

    Google Scholar 

  83. Egnor, M., Rosiello, A., Zheng, L.: A model of intracranial pulsations. Pediatr. Neurosurg. 35(6), 284–298 (2001)

    Article  Google Scholar 

  84. Penn, R.D., Linninger, A.: The physics of hydrocephalus. Pediatr. Neurosurg. 45(3), 161–174 (2009)

    Article  Google Scholar 

  85. Aschoff, A., Kremer, P., Benesch, C., Fruh, K., Klank, A., Kunze, S.: Overdrainage and shunt technology. Childs Nerv. Syst. 11, 193–202 (1995)

    Article  Google Scholar 

  86. Czosnyka, Z.H., Czosnyka, M., Pickard, J.D.: Shunt testing in-vivo: a method based on the data from the UK shunt evaluation laboratory. Acta Neurochir. Suppl. 81, 27–30 (2002)

    Google Scholar 

  87. Taylor, R., Czosnyka, Z., Czosnyka, M., Pickard, J.D.: A laboratory model of testing shunt performance after implantation. Br. J. Neurosurg. 16, 30–35 (2002)

    Article  Google Scholar 

  88. Czosnyka, Z., Czosnyka, M., Richards, H.K., Pickard, J.D.: Posture-related overdrainage: comparison of the performance of 10 hydrocephalus shunts in vitro. Neurosurgery. 42(2), 327–333 (1998)

    Article  Google Scholar 

  89. Scollato, A., Gallina, P., Gautam, B., Pellicano, G., Cavallini, C., Tenenbaum, R., Di Lorenzo, N.: Changes in aqueductal CSF stroke volume in shunted patients with idiopathic normal-pressure hydrocephalus. AJNR Am. J. Neuroradiol. 30(8), 1580–1586 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Czosnyka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Geregele, L. et al. (2019). Dynamics of Cerebrospinal Fluid: From Theoretical Models to Clinical Applications. In: Miller, K. (eds) Biomechanics of the Brain. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-04996-6_8

Download citation

Publish with us

Policies and ethics