Skip to main content

Biomedical Applications of Electrospun Polymer Composite Nanofibres

  • Chapter
  • First Online:
Polymer Nanocomposites in Biomedical Engineering

Part of the book series: Lecture Notes in Bioengineering ((LNBE))

Abstract

Electrospun polymeric nanofibers (PNFs) play a pivotal role in every facet of science, engineering, and technology. Electrospinning (ES) is the technique that endows non-woven fibers in the nanometer scales and that owns superior properties including high surface areas, mechanical strength, easy processability, mass production, and ease of functionalization. This technique has a great versatility to be altered in different ways for synergizing material properties with different morphology, in order to fulfill the requirement of desired applications. In general, the precursor materials used for producing electrospun nanofibers (NFs) are natural and synthetic polymers, ceramics, or composites. These precursors are carefully selected based on the nature and the structure of desired tissues regeneration. The application of electrospun PNFs in the biomedical field is very vital. It is a well-known fact that all the tissues and organs such as bone, tendons, cartilage, skin, and dentine of living beings comprise fibrous structures in the nanometer range. This chapter attempts to make an overview of the recent advances in electrospun polymeric composite NFs for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agarwal P, Pramanik K (2016) Chitosan-poly(vinyl alcohol) nanofibers by free surface electrospinning for tissue engineering applications. Tissue Eng Regenerative Med 13(5):485–497

    Google Scholar 

  • Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49(26):5603–5621

    Google Scholar 

  • Aghdam RM, Najarian S, Shakhesi S, Khanlari S, Shaabani K, Sharifi S (2012) Investigating the effect of PGA on physical and mechanical properties of electrospun PCL/PGA blend nanofibers. J Appl Polym Sci 124(1):123–131

    Google Scholar 

  • Ajalloueian F, Tavanai H, Hilborn J, Donzel-Gargand O, Leifer K, Wickham A, Arpanaei A (2014) Emulsion electrospinning as an approach to fabricate PLGA/chitosan nanofibers for biomedical applications. BioMed Res Int 2014(Article ID: 475280)

    Google Scholar 

  • Alhosseini SN, Moztarzadeh F, Mozafari M, Asgari S, Dodel M, Samadikuchaksaraei A, Kargozar S, Jalali N (2012) Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering. Int J Nanomed 7:25–34

    Google Scholar 

  • Ansary RH, Awang MB, Rahman MM (2014) Biodegradable poly (d,l-lactic-co-glycolic acid)-based micro/nanoparticles for sustained release of protein drugs-a review. Trop J Pharm Res 13(7):1179–1190

    Google Scholar 

  • Asran AS, Razghandi K, Aggarwal N, Michler GH, Groth T (2010) Nanofibers from blends of polyvinyl alcohol and polyhydroxy butyrate as potential scaffold material for tissue engineering of skin. Biomacromolecules 11(12):3413–3421

    Google Scholar 

  • Athanasiou KA, Schmitz JP, Agrawal CM (2007) The effects of porosity on in vitro degradation of polylactic acid–polyglycolic acid implants used in repair of articular cartilage. Tissue Eng 4(1):53–63

    Google Scholar 

  • Aznar-Cervantes S, Roca MI, Martinez JG, Meseguer-Olmo L, Cenis JL, Moraleda JM, Otero TF (2012) Fabrication of conductive electrospun silk fibroin scaffolds by coating with polypyrrole for biomedical applications. Bioelectrochemistry 85:36–43

    Google Scholar 

  • Bai MY, Liu SZ (2014) A simple and general method for preparing antibody-PEG-PLGA sub-micron particles using electrospray technique: an in vitro study of targeted delivery of cisplatin to ovarian cancer cells. Colloids Surf B 117:346–353

    Google Scholar 

  • Baker MI, Walsh SP, Schwartz Z, Boyan BD (2012) A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res B Appl Biomater 100(5):1451–1457

    Google Scholar 

  • Baker DW, Zhou J, Tsai YT, Patty KM, Weng H, Tang EN, Nair A, Hu WJ, Tang L (2014) Development of optical probes for in vivo imaging of polarized macrophages during foreign body reactions. Acta Biomateralia 10(7):2945–2955

    Google Scholar 

  • Balint R, Cassidy NJ, Cartmell SH (2014) Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomateralia 10(6):2341–2353

    Google Scholar 

  • Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL (2007) Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev 59(14):1413–1433

    Google Scholar 

  • Blomqvist J, Mannfors B, Pietila LO (2002) Amorphous cell studies of Polyglycolic, Poly(l-lactic), Poly(l,d-lactic) and Poly(glycolic/l-lactic) acids. Polymer 43(17):4571–4583

    Google Scholar 

  • Boakye MAD, Rija NP, Adhikari U, Bhattarai N (2015) Fabrication and characterization of electrospun PCL-MgO-Keratin-based composite nanofibers for biomedical applications. Materials 8(7):4080–4095

    Google Scholar 

  • Boateng JS, Matthews KH, Stevens HNE, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97(8):2892–2923

    Google Scholar 

  • Borriello A, Guarino V, Schiavo L, Alvarez-Perez MA, Ambrosio L (2011) Optimizing PANi doped electroactive substrates as patches for the regeneration of cardiac muscle. J Mater Sci: Mater Med 22(4):1053–1062

    Google Scholar 

  • Brissault B, Kichler A, Guis C, Leborgne C, Danos O, Cheradame H (2003) Synthesis of linear polyethylenimine derivatives for DNA transfection. Bioconjug Chem 14(3):581–587

    Google Scholar 

  • Chang HC, Sun T, Sultana N, Lim MM, Khan TH, Ismail AF (2016) Conductive PEDOT:PSS coated polylactide (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) electrospun membranes: fabrication and characterization. Mater Sci Eng C 61:396–410

    Google Scholar 

  • Chellamani KP, Sundaramoorthy P, Suresham T (2012) Wound dressing made out of poly vinyl alcohol/chitosan nanomembranes. J Acad Ind Res 1(6):342–347

    Google Scholar 

  • Chellamani KP, Balaji RSV, Veerasubramanian D (2014) Development of wound dressing made of electro spun tetracycline hydrochloride drug incorporated PCL (Poly(Ε-Caprolactone)) nanomembrane. Int J Emerging Technol Adv Eng 4(4):251–256

    Google Scholar 

  • Chen C, Lv G, Pan C, Song M, Wu C, Guo D, Wang X, Chen B, Gu Z (2007) Poly(lactic acid) (PLA) based nanocomposites—a novel way of drug-releasing. Biomed Mater 2(4):1–4

    Google Scholar 

  • Chen JP, Chang GY, Chen JK (2008) Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids Surf A 313–314:183–188

    Google Scholar 

  • Chong C, Wang Y, Maitz PKM, Simanainen U, Li Z (2013) Electrospun scaffold loaded with anti-androgen receptor compound for accelerating wound healing. Burns Trauma 1(2):95–101

    Google Scholar 

  • Choong C, Triffitt JT, Cui ZF (2004) Polycaprolactone scaffolds for bone tissue engineering: effects of a calcium phosphate coating layer on osteogenic cells. Food Bioprod Process 82(2):117–125

    Google Scholar 

  • Cohn D, Stern T, Gonzalez MF, Epstein J (2002) Biodegradable poly(ethylene oxide)/poly(epsilon-caprolactone) multiblock copolymers. J Biomed Mater Res 59(2):273–281

    Google Scholar 

  • Conn RE, Kolstad JJ, Borzelleca JF, Dixler DS, Filer LJ, LaDu BN, Pariza MW (1995) Safety assessment of polylactide (PLA) for use as a food contact polymer. Food Chem Toxicol 33(4):273–283

    Google Scholar 

  • Croll TI, O’Connor AJ, Stevens GW, Cooper-White JJ (2004) Controllable modification of poly(lactic-co-glycolic acid) (PLGA) by hydrolysis or amunolysis I: physical, chemical, and theoretical aspects. Biomacromolecules 5(2):463–473

    Google Scholar 

  • Danhier F, Ansorena E, Silva JM, Coco R, Breton AL, Preat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Controlled Release 161(2):505–522

    Google Scholar 

  • Delebecq E, Pascault JP, Boutevin B, Ganachaud F (2013) On the versatility of urethane/urea bonds: reversibility, blocked isocyanate and non-isocyanate polyurethane. Chem Rev 113(1):80–118

    Google Scholar 

  • Deshmukh K, Ahamed MB, Pasha SKK, Deshmukh RR, Bhagat PR (2015) Highly dispersible graphene oxide reinforced polypyrole/polyvinyl alcohol blend nanocomposites with high dielectric constant and low dielectric loss. RSC Adv 5:61933–61945

    Google Scholar 

  • Deshmukh K, Ahamed MB, Deshmukh RR, Pasha SKK, Chidambaram K, Sadasivuni KK, Ponnamma D, AlMaadeed MAA (2016a) Eco-friendly synthesis of graphene oxide reinforced hydroxypropyl methyl cellulose/polyvinyl alcohol blend nanocomposites filled with zinc oxide nanoparticles for high-k capacitor applications. Polym-Plast Technol Eng 55(12):1240–1253

    Google Scholar 

  • Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, Deshmukh RR, Pasha SKK, AlMaadeed MAA, Chidambaram K (2016b) Graphene oxide reinforced polyvinyl alcohol blend composites as high performance dielectric materials. J Polym Res 23:159

    Google Scholar 

  • Deshmukh K, Ahamed MB, Deshmukh RR, Pasha SKK, Sadasivuni KK, Ponnamma D, Chidambaram K (2016c) Synergistic effect of vanadium pentoxide and graphene oxide in polyvinyl alcohol for energy storage applications. Eur Polym J 76:14–27

    Google Scholar 

  • Deshmukh K, Ahamed MB, Deshmukh RR, Bhagat PR, Pasha SKK, Bhagat A, Shirbhate R, Telare F, Lakhani C (2016d) Influence of K2CrO4 doping on the structural, optical and dielectric properties of polyvinyl alcohol/K2CrO4 composite films. Polym-Plast Technol Eng 55(3):231–241

    Google Scholar 

  • Deshmukh K, Ahamed MB, Deshmukh RR, Sadasivuni KK, Ponnamma D, Pasha SKK, AlMaadeed MAA, Polu AR, Chidambaram K (2017a) Eeonomer 200F®: A high performance nanofiller for polymer reinforcement-Investigation of the structure, morphology and dielectric properties of polyvinyl alcohol/Eeonomer 200F® nanocomposites for embedded capacitor applications. J Electron Mater 46(4):2406–2418

    Google Scholar 

  • Deshmukh K, Ahamed MB, Sadasivuni K, Ponnamma D, AlMaadeed MAA, Deshmukh RR, Pasha SKK, Polu AR, Chidambaram K (2017b) Fumed SiO2 nanoparticle reinforced biopolymer blend nanocomposites with high dielectric constant and low dielectric loss for flexible organic electronics. J Appl Polym Sci 134(5):44427

    Google Scholar 

  • Deshmukh K, Ahamed MB, Deshmukh RR, Pasha SKK, Sadasivuni KK, Ponnamma D, AlMaadeed MAA (2017c) Striking multiple synergies in novel three-phase fluoropolymer nanocomposites by combining titanium dioxide and graphene oxide as hybrid fillers. J Mater Sci: Mater Electron 28(1):559–575

    Google Scholar 

  • Deshmukh K, Ahamed MB, Deshmukh RR, Pasha SKK, Sadasivuni KK, Polu AR, Ponnamma D, AlMaadeed MAA, Chidambaram K (2017d) Newly developed biodegradable polymer nanocomposites of cellulose acetate and Al2O3 nanoparticles with enhanced dielectric performance for embedded passive applications. J Mater Sci: Mater Electron 28(1):973–986

    Google Scholar 

  • Duan YY, Jia J, Wang SH, Yan W, Jin L, Wang ZY (2007) Preparation of antimicrobial poly(ε-caprolactone) electrospun NFs containing silver loaded zirconium phosphate nanoparticles. J Appl Polym Sci 106(2):1208–1214

    Google Scholar 

  • El-Aassar MR, El-Fawal GF, El-Deeb NM, Hassan SH, Mo X (2016) Electrospun polyvinyl alcohol/pluronic F127 blended nanofibers containing titanium dioxide for antibacterial wound dressing. Appl Biochem Biotechnol 178(8):1488–1502

    Google Scholar 

  • Fan ZY, Zhao YL, Zhu XY, Luo Y, Shen MW, Shi XY (2016) Folic acid modified electrospun poly(vinyl alcohol)/polyethyleneimine nanofibers for cancer cell capture applications. Chin J Polym Sci 3(6):755–765

    Google Scholar 

  • Fernandes JG, Correia DM, Botelho G, Padrao J, Dourado F, Ribeiro C, Lanceros-Mendez S, Sencadas V (2014) PHB-PEO electrospun fiber membranes containing chlorhexidine for drug delivery applications. Polym Testing 34:64–71

    Google Scholar 

  • French AC, Thompson AL, Davis BG (2009) High purity discrete PEG oligomer crystals allow structural insight. Angew Chem Int Ed 48(7):1248–1252

    Google Scholar 

  • Fujihara K, Kotaki M, Ramakrishna S (2005) Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials 26(19):4139–4147

    Google Scholar 

  • Gallant-Behm CL, Yin HQ, Jui S, Heggers JP, Langford RE, Olson ME, Hart DA, Burrell RE (2005) Comparison of in vitro disc diffusion and time kill-kinetic assays for the evaluation of antimicrobial wound dressing efficacy. Wound Repair Regeneration 13(4):412–421

    Google Scholar 

  • Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9(2):63–84

    Google Scholar 

  • Gentile P, Chiono V, Carmagnola I, Hatton PV (2014) An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 15(3):3640–3659

    Google Scholar 

  • Gholipour AK, Bahrami SH, Nouri M (2009) Chitosan-poly(vinyl alcohol) blend nanofibers: Morphology, biological and antimicrobial properties. E-Polym 9(1):1–12

    Google Scholar 

  • Ghosal K, Thomas S, Kalarikkal N, Gnanamani A (2014) Collagen coated electrospun polycaprolactone (PCL) with titanium dioxide (TiO2) from an environmentally benign solvent: preliminary physico-chemical studies for skin substitute. J Polym Res 21(410):1–5

    Google Scholar 

  • Gilding DK, Reed AM (1979) Biodegradable polymers for use in surgery—polyglycolic/poly(lactic acid) homo- and copolymers. Polymer 20(12):1459–1464

    Google Scholar 

  • Gizdavic-Nikolaidis M, Ray S, Bennett JR, Easteal AJ, Cooney RP (2010) Electrospun functionalized polyaniline copolymer-based nanofibers with potential application in tissue engineering. Macromol Biosci 10(12):1424–1431

    Google Scholar 

  • Goncalves RP, da Silva FFF, Picciani PHS, Dias ML (2015) Morphology and thermal properties of core-shell PVA/PLA ultrafine fibers produced by coaxial electrospinning. Mater Sci Appl 6(2):189–199

    Google Scholar 

  • Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46(30):5670–5703

    Google Scholar 

  • Groenendaal LB, Jonas F, Freitag H, Pielartzik H, Reynolds JR (2000) Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv Mater 12(7):481–494

    Google Scholar 

  • Hajiali H, Shahgasempour S, Naimi-Jamal MR, Peirovi H (2011) Electrospun PGA/gelatin nanofibrous scaffolds and their potential application in vascular tissue engineering. Int J Nanomed 6:2133–2141

    Google Scholar 

  • Hamad K, Kaseem M, Yang HW, Deri F, Ko YG (2015) Properties and medical applications of polylactic acid: A review. Express Polym Lett 9(5):435–455

    Google Scholar 

  • Hardiansyah A, Tanadi H, Yang MC, Liu TY (2015) Electrospinning and antibacterial activity of chitosan-blended poly(lactic acid) nanofibers. J Polym Res 22(59):1–10

    Google Scholar 

  • Hassan CM, Peppas NA (2000) Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv Polym Sci 153:37–65

    Google Scholar 

  • Hassiba AJ, Zowalaty ME, Nasrallah GK, Webster TJ, Luyt AS, Abdullah AM, Elzatahry AA (2016) Review of recent research on biomedical applications of electrospun polymer nanofibers for improved wound healing. Nanomedicine 11(6):715–737

    Google Scholar 

  • Heo SY, Seo JW, Kim NS (2014) Characterisation and assessment of electrospun poly/hydroxyapatite nanofibres together with a cell adhesive for bone repair applications. Vet Med 59(10):498–501

    Google Scholar 

  • Hiep NT, Lee BT (2010) Electro-spinning of PLGA/PCL blends for tissue engineering and their biocompatibility. J Mater Sci: Mater Med 21(6):1969–1978

    Google Scholar 

  • Hirashi N, Yau JY, Loushine RJ, Armstrong SR, Weller RN, King NM, Pashley DH, Tay FR (2007) Susceptibility of a polycaprolactone-based root canal-filling material to degradation. III. Turbidimetric evaluation of enzymatic hydrolysis. J Endod 33(8):952–956

    Google Scholar 

  • Hoveizi E, Nabiuni M, Parivar K, Zeleti SR, Tavakol S (2014) Functionalisation and surface modification of electrospun polylactic acid scaffold for tissue engineering. Cell Biol Int 38(1):41–49

    Google Scholar 

  • Huang ZM, He CL, Yang A, Zhang Y, Han XJ, Yin J, Wu Q (2006a) Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning. J Biomed Mater Res Part A 77(1):169–179

    Google Scholar 

  • Huang LM, Chen CH, Wen TC (2006b) Development and characterization of flexible electrochromic devices based on polyaniline and poly(3,4-ethylenedioxythiophene) poly(styrene sulfonic acid). Electrochim Acta 51(26):5858–5863

    Google Scholar 

  • Huang ZB, Yin GF, Liao XM, Wen J (2014) Conducting polypyrrole in tissue engineering applications. Front Mater Sci 8(1):39–45

    Google Scholar 

  • Ignatova M, Starbova K, Markova N, Manolova N, Rashkov I (2006) Electrospunnano-fibre mats with antibacterial properties from quaternized chitosan and poly(vinyl alcohol). Carbohydr Res 341(12):2098–2107

    Google Scholar 

  • Immich APS, Arias ML, Carreras N, Boemo RL, Tornero JA (2013) Drug delivery systems using sandwich configurations of electrospun poly(lactic acid) nanofiber membranes and ibuprofen. Mater Sci Eng C 33(7):4002–4008

    Google Scholar 

  • Jayakumar R, Nair SV, Furuike T, Tamura H (2010) Perspectives of chitin and chitosan nanofibrous scaffolds in tissue engineering. In: Eberli D (ed) tissue engineering. InTech, Rijeka. https://doi.org/10.5772/8593

    Chapter  Google Scholar 

  • Jayakumar R, Chennazhi KP, Srinivasan S, Nair SV, Furuike T, Tamura H (2011) Chitin scaffolds in tissue engineering. Int J Mol Sci 12(3):1876–1887

    Google Scholar 

  • Jesus VGL, Cornejo-Bravo JM, Vera-Graziano R, Grande D (2016) Electrospinning as a powerful technique for biomedical applications: a critically selected survey. J Biomater Sci Polym Ed 27(2):157–176

    Google Scholar 

  • Jin L, Wang T, Feng ZQ, Leach MK, Wu J, Mo S, Jiang Q (2013) A facile approach for the fabrication of core-shell PEDOT nanofiber mats with superior mechanical properties and biocompatibility. J Mater Chem B 1(13):1818–1825

    Google Scholar 

  • Jones SA, Bowler PG, Walker M, Parsons D (2004) Controlling wound bioburden with a novel silver containing hydrofiber dressing. Wound Repair Regeneration 12(3):288–294

    Google Scholar 

  • Kaihara S, Matsumura S, Mikos AG, Fisher JP (2007) Synthesis of poly(l-lactide) and polyglycolide by ring-opening polymerization. Nat Protoc 2(11):2767–2771

    Google Scholar 

  • Kanani AG, Bahrami SH (2010) Review on electrospun nanofibers scaffold and biomedical applications. Trends Biomater Artif Organs 24(2):93–115

    Google Scholar 

  • Kang YO, Yoon IS, Lee SY, Kim DD, Lee SJ, Park WH, Hudson SM (2010) Chitosan-coated poly(vinyl alcohol) nanofibers for wound dressings. J Biomed Mater Res B Appl Biomater 92(2):568–576

    Google Scholar 

  • Kaur G, Adhikari R, Cass P, Bown M, Gunatillake P (2015) Electrically conductive polymers and composites for biomedical applications. RSC Adv 5:37553–37567

    Google Scholar 

  • Kenawy ER, Abdel-Hay FI, El-Newehy MH, Wnek GE (2007) Controlled release of ketoprofen from electrospun poly(vinyl alcohol) nanofibers. Mater Sci Eng A 459(1–2):390–396

    Google Scholar 

  • Khalil KA, Fouad H, Elsarnagawy T, Almajhdi FN (2013) Preparation and characterization of electrospun PLGA/silver composite nanofibers for biomedical applications. Int J Electrochem Sci 8:3483–3493

    Google Scholar 

  • Khanam N, Mikoryak C, Draper RK, Balkus KJ Jr (2007) Electrospun linear polyethyleneimine scaffolds for cell growth. Acta Biomateralia 3(6):1050–1059

    Google Scholar 

  • Khoo RZ, Ismail H, Chow WS (2016) Thermal and morphological properties of poly(lactic acid)/nanocellulose nanocomposites. Procedia Chem 19:788–794

    Google Scholar 

  • Kim K, Yu M, Zong X, Chiu J, Fang D, Seo YS, Hsiao BS, Chu B, Dadjiargyrou M (2003) Control of degradation rate and hydrophilicity in electrospun non-woven poly (d,l-lactide) nanofiber scaffolds for biomedical applications. Biomaterials 24(27):4497–4585

    Google Scholar 

  • Kim K, Luu YK, Chang C, Fang D, Hsiao BS, Chu B, Hadjiargyrou M (2004) Incorporation and controlled release of hydrophilic antibiotic using Poly(lactide-co-glycolide)—based electrospun nanofibrous scaffolds. J Controlled Release 98(1):47–56

    Google Scholar 

  • Kim SE, Heo DN, Lee JB, Kim JR, Park SH, Jeon SH, Kwon IK (2009a) Electrospun gelatin/polyurethane blended nanofibers for wound healing. Biomed Mater 4(4):044106

    Google Scholar 

  • Kim JH, Choung PH, Kim IY, Lim KT, Son HM, Choung YH, Cho CS, Chung JH (2009b) Electrospun nanofibers composed of poly(ε-caprolactone) and polyethylenimine for tissue engineering applications. Mater Sci Eng C 29(5):1725–1731

    Google Scholar 

  • Kim JI, Pant HR, Sim HJ, Lee KM, Kim CS (2014) Electrospun propolis/polyurethane composite nanofibers for biomedical applications. Mater Sci Eng C 44(1):52–57

    Google Scholar 

  • Kovar J, Wang Y, Simpson MA, Olive DM (2009) Imaging lymphatics with a variety of near-infrared-labeled optical agents. In: World molecular imaging conference, pp 67–68

    Google Scholar 

  • Kowalski A, Duda A, Penczek S (2000) Mechanism of cyclic ester polymerization initiated with tin(II) octoate. 2. Macromolecules fitted with tin (II) alkoxide species observed directly in MALDI-TOF spectra. Macromolecules 33(3):689–695

    Google Scholar 

  • Lasprilla AJR, Martinez GAR, Lunelli BM, Jardini AL, Fiho RM (2012) Poly-lactic acid synthesis for application in biomedical devices—a review. Biotechnol Adv 30(1):321–328

    Google Scholar 

  • Law JX, Liau LL, Saim A, Yang Y, Idrus R (2017) Electrospun collagen nanofibers and their applications in skin tissue engineering. Tissue Eng Regenerative Med 14(6):1–20

    Google Scholar 

  • Leaper DJ (2006) Silver dressings: their role in wound management. Int Wound J 3(4):282–294

    Google Scholar 

  • Lee SJ, Liu J, Oh SH, Soker S, Atala A, Yoo JJ (2008) Development of a composite vascular scaffolding system that withstands physiological vascular conditions. Biomaterials 29(19):2891–2898

    Google Scholar 

  • Lee JY, Bashur CA, Goldstein AS, Schmidt CE (2009) Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 30(26):4325–4335

    Google Scholar 

  • Lee EJ, Lee JH, Shin YC, Hwang DG, Kim JS, Jin OS, Jin L, Hong SW, Han DW (2014) Graphene oxide-decorated PLGA/collagen hybrid fiber sheets for application to tissue engineering scaffolds. Biomater Res 18(1):18–24

    Google Scholar 

  • Leung V, Ko F (2011) Biomedical applications of nanofibers. Polym Adv Technol 22(3):350–365

    Google Scholar 

  • Li S, Garreau H, Pauvert B, McGrath J, Toniolo A, Vert M (2002) Enzymatic degradation of block copolymers prepared from epsilon-caprolactone and poly(ethylene glycol). Biomacromolecules 3(3):525–530

    Google Scholar 

  • Li M, Guo Y, Wei Y, MacDiarmid AG, Lelkesa Peter I (2006) Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials 27(13):2705–2715

    Google Scholar 

  • Li J, Stayshich RM, Meyer TY (2011) Exploiting sequence to control the hydrolysis behavior of biodegradable PLGA copolymers. J Am Chem Soc 133(18):6910–6913

    Google Scholar 

  • Liao IC, Chew SY, Leong KW (2006) Aligned core-shell nanofibers delivering bioactive proteins. Nanomedicine 1(4):465–471

    Google Scholar 

  • Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33(8):820–852

    Google Scholar 

  • Liu XF, Liu XB (2015) Polyethyleneimine as targeted gene vectors: a review. J Int Pharm Res 42(4):478–482

    Google Scholar 

  • Liu M, Duan XP, Li YM, Yang DP, Long YZ (2017) Electrospun nanofibers for wound healing. Mater Sci Eng C 76:1413–1423

    Google Scholar 

  • Llorens E, Armelin E, Pérez-Madrigal MDM, Valle LJD, Aleman C, Puiggalí J (2013) Nanomembranes and nanofibers from biodegradable conducting polymers. Polymers 5(3):1115–1157

    Google Scholar 

  • Louis CS (2012). Drug for adults is popular as children’s remedy. The New York Times

    Google Scholar 

  • MacDiarmid AG (2001) Synthetic metals: a novel role for organic polymers (Nobel lecture). Angew Chem Int Ed 40(14):2581–2590

    Google Scholar 

  • Makadia HK, Siegel SJ (2011) Polylactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3(3):1377–1397

    Google Scholar 

  • Manea LR, Hristian L, Leon AL, Popa A (2016) Recent advances of basic materials to obtain electrospun polymeric nanofibers for medical applications. IOP Conf Ser: Mater Sci Eng 145(3):032006

    Google Scholar 

  • Marin E, Rojas J, Ciro Y (2014) A review of polyvinyl alcohol derivatives: promising materials for pharmaceutical and biomedical applications. Afr J Pharm Pharmacol 8(24):674–684

    Google Scholar 

  • Marten FL (2002) vinyl alcohol polymers. Encycl Polym Sci Technol 8:399–437

    Google Scholar 

  • Matuseviciute A, Butkiene A, Stanys S, Adomaviciute E (2012) Formation of PVA nanofibres with iodine by electrospinning. Fibres Textiles Eastern Eur 20(3):21–25

    Google Scholar 

  • McKeon KD, Lewis A, Freeman JW (2010) Electrospun poly (d,l-Lactide) and polyaniline scaffold characterization. J Appl Polym Sci 115(3):1566–1572

    Google Scholar 

  • McKeon-Fischer KD, Browe DP, Olabisi RM, Freeman JW (2015) Poly(3,4-ethylenedioxythiophene) nanoparticle and poly(É›-caprolactone) electrospun scaffold characterization for skeletal muscle regeneration. J Biomed Mater Res Part A 103(11):3633–3641

    Google Scholar 

  • Menaa B (2011) The importance of nanotechnology in biomedical sciences. J Biotechnol Biomater 1(5):105e

    Google Scholar 

  • Meng J, Xiao B, Zhang Y, Liu J, Xue HD, Lei J, Kong H, Huang YG, Jin ZY, Gu N, Xu H (2013) Super-paramagnetic responsive nanofibrous scaffolds under static magnetic field enhance osteogenesis for bone repair in vivo. Sci Rep 3:2655

    Google Scholar 

  • Middleton J, Tipton A (2006) Synthetic biodegradable polymers as medical devices. Med Plast Biomater Mag

    Google Scholar 

  • Mirakabad FST, Nejati-Koshki K, Akbarzadeh A, Yamchi MR, Milani M, Zarghami N, Zeighamian V, Rahimzadeh A, Alimohammadi S, Hanifehpour Y, Joo SW (2014) PLGA-based nanoparticles as cancer drug delivery systems. Asian Pac J Cancer Prev 15(2):517–535

    Google Scholar 

  • Mirzaei E, Faridi-Majidi R, Shokrgozar MA, Paskiabi FA (2014) Genipin cross-linked electrospun chitosan-based nanofibrous mat as tissue engineering scaffold. Nanomed J 1(3):137–146

    Google Scholar 

  • Mohamed RM, Yusoh K (2016) A review on the recent research of polycaprolactone (PCL). Adv Mater Res 1134:249–255

    Google Scholar 

  • Mohanapriya MK, Deshmukh K, Ahamed MB, Chidambaram K, Pasha SKK (2016a) Zeolite 4A filled poly(3,4-ethylenedioxythiophene): (polystyrenesulfonate) and polyvinyl alcohol blend nanocomposites as high-k dielectric materials for embedded capacitor applications. Adv Mater Lett 7(12):996–1002

    Google Scholar 

  • Mohanapriya MK, Deshmukh K, Ahamed MB, Chidambaram K, Pasha SKK (2016b) Influence of cerium oxide (CeO2) nanoparticles on the structural, morphological, mechanical and dielectric properties of PVA/PPy blend nanocomposites. Mater Today: Proc 3(6):1864–1873

    Google Scholar 

  • Mohanapriya MK, Deshmukh K, Chidambaram K, Ahamed MB, Sadasivuni KK, Ponnamma D, AlMaadeed MAA, Deshmukh RR, Pasha SKK (2017) Polyvinyl alcohol (PVA)/polystyrene sulfonic acid (PSSA)/carbon black nanocomposites for flexible energy storage device applications. J Mater Sci: Mater Electron 28:6099–6111

    Google Scholar 

  • Molapo KM, Ndangili PM, Ajayi RF, Mbambisa G, Mailu SM, Njomo N, Masikini M, Baker P, Iwuoha I (2012) Electronics of conjugated polymers (I): polyaniline. Int J Electrochem Sci 7(12):11859–11875

    Google Scholar 

  • Moreno I, Gonzalez-Gonzalez V, Romero-Garcia J (2011) Control release of lactate dehydrogenase encapsulated in poly(vinyl alcohol) nanofibers via electrospinning. Eur Polym J 47:1264–1272

    Google Scholar 

  • Muppalaneni S, Omidian H (2013) Polyvinyl alcohol in medicine and pharmacy: a perspective. J Dev Drugs 2(3):1–5

    Google Scholar 

  • Nagaraj A, Govindaraj D, Rajan M (2018) Magnesium oxide entrapped polypyrole hybrid nanocomposites as an efficient selective scavenger for fluoride ion in drinking water. Emergent Mater 1(1–2):1–9

    Google Scholar 

  • Ni P, Fu S, Fan M, Guo G, Shi S, Peng J, Luo F, Qian Z (2011) Preparation of poly(ethylene glycol)/polylactide hybrid fibrous scaffolds for bone tissue engineering. Int J Nanomed 6:3065–3075

    Google Scholar 

  • Park JY, Lee IH (2011) Controlled release of ketoprofen from electrospun porous polylactic acid (PLA) nanofibers. J Polym Res 18(6):1287–1291

    Google Scholar 

  • Park KE, Kang HK, Lee SJ, Min BM, Park WH (2006) Biomimetic nanofibrous scaffolds: preparation and characterization of PGA/chitin blend nanofibers. Biomacromolecules 7(2):635–643

    Google Scholar 

  • Pavot V, Berthet M, Resseguier J, Legaz S, Handke N, Gilbert SC, Paul S, Verrier B (2014) Poly(lactic acid) and poly(lactic-co-glycolic acid) particles as versatile carrier platforms for vaccine delivery. Nanomedicine 9(17):2703–2718

    Google Scholar 

  • Pawde SM, Deshmukh K (2008) Characterization of polyvinylalcohol/gelatin blend hydrogel films for biomedical applications. J Appl Polym Sci 109(5):3431–3437

    Google Scholar 

  • Pawde SM, Deshmukh K, Parab S (2008) Preparation and characterization of polyvinylalcohol and gelatin blend films. J Appl Polym Sci 109(2):1328–1337

    Google Scholar 

  • Prabhakaran MP, Venugopal J, Ramakrishna S (2009) Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomaterilia 5(8):2884–2893

    Google Scholar 

  • Prabhakaran MP, Ghasemi-Mobarakeh L, Jin G, Ramakrishna S (2011) Electrospun conducting polymer nanofibers and electrical stimulation of nerve stem cells. J Biosci Bioeng 112(5):501–507

    Google Scholar 

  • Pyshkina O, Kubarkov A, Sergeyev V (2010) Poly(3,4-ethylenedioxythiophene): synthesis and properties. Mater Sci Appl Chem 21:51–54

    Google Scholar 

  • Repanas A, Wolkers WF, Gryshkov O, Müller M, Glasmacher B (2015) PCL/PEG electrospun fibers as drug carriers for the controlled delivery of dipyridamole. J In Silico In Vitro Pharmacol 1(2):1–10

    Google Scholar 

  • Rieger KA, Birch NP, Schiffman JD (2013) Designing electrospun nanofiber mats to promote wound healing—a review. J Mater Chem B 1(36):4531–4541

    Google Scholar 

  • Roberts MJ, Bentley MD, Harris JM (2002) Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 54(4):459–476

    Google Scholar 

  • Rujiravanit R, Kruaukitanan S, Jamieson AM, Tokura S (2003) Preparation of crosslinked chitosan/silk fibroin blend films for drug delivery systems. Macromol Biosci 3:604–611

    Google Scholar 

  • Saha K, Butola BS, Joshi M (2014) Drug-loaded polyurethane/clay nanocomposite nanofibers for topical drug-delivery application. J Appl Polym Sci 131(10):40230

    Google Scholar 

  • Saraf A, Baggett LS, Raphael RM, Kasper FK, Mikos AG (2010) Regulated non-viral gene delivery from coaxial electrospun fiber mesh scaffolds. J Controlled Release 143(1):95–103

    Google Scholar 

  • Sasipriya K, Suriyaprabha R, Prabu P, Rajendran V (2013) Synthesis and characterisation of polymeric nanofibers poly(vinyl alcohol) and poly(vinyl alcohol)/silica using indigenous electrospinning set up. Mater Res 16(4):824–830

    Google Scholar 

  • Shalumon KT, Binulal NS, Selvamurugan N, Nair SV, Menon D, Furuike T, Tamura H, Jayakumar R (2009) Electrospinning of carboxymethyl chitin/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohyd Polym 77(4):863–869

    Google Scholar 

  • Sharma AK, Sharna Y, Duhan S (2015) Biocompatible smart matrices based on poly(3,4-ethylenedioxythiophene)-poly(n-isopropylacrylamide) composite. Int J Polym Mater Polym Biomater 64(7):333–337

    Google Scholar 

  • Sill TJ, Recum HAV (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29(13):1989–2006

    Google Scholar 

  • Smolinske SC (1992) Handbook of food, drug and cosmetic excipients. CRC Press, Boca Raton, p 287. ISBN 0-8493-3585-X

    Google Scholar 

  • Song B, Wua C, Chang J (2012) Dual drug release from electrospun poly(lactic-co-glycolic acid)/mesoporous silica nanoparticles composite mats with distinct release profiles. Acta Biomaterilia 8(5):1901–1907

    Google Scholar 

  • Spasova M, Stoilova O, Manolova N, Rashkov I, Altankov G (2007) Preparation of PLLA/PEG nanofibers by electrospinning and potential applications. J Bioact Compatible Polym 22(1):62–76

    Google Scholar 

  • Spasova M, Paneva D, Manolova N, Radenkov P, Rashkov I (2008) Electrospun chitosan-coated fibers of poly(l-lactide) and poly(l-lactide)/poly(ethylene glycol): preparation and characterization. Macromol Biosci 8(2):153–162

    Google Scholar 

  • Stevanoviae M, Saviae J, Jordoviae B, Uskokoviae D (2007) Fabrication, in vitro degradation and the release behaviours of poly(dl-lactide-co-glycolide) nanospheres containing ascorbic acid. Colloids Surf B Bioniterfaces 59(2):215–223

    Google Scholar 

  • Stevens MM, George JH (2005) Exploring and engineering the cell surface interface. Science 310(5751):1135–1138

    Google Scholar 

  • Sun B, Duan B, Yuan X (2006) Preparation of core/shell PVP/PLA ultrafine fibers by coaxial electrospinning. J Appl Polym Sci 102(1):39–45

    Google Scholar 

  • Suwilai T, Ng JJ, Boonkrai C, Israsena N, Chuangchote S, Supaphol P (2014) Polypyrrole-coated electrospun poly(lactic acid) fibrous scaffold: effects of coating on electrical conductivity and neural cell growth. J Biomater Sci: Polym Ed 25(12):1240–1252

    Google Scholar 

  • Taepaiboon P, Rungsardthong U, Supaphol P (2006) Drug loaded electrospun mats of Poly(vinyl alcohol) fibres and their release characteristics of four model drugs. Nanotechnology 17(9):2317–2329

    Google Scholar 

  • Takahashi K, Taniguchi I, Miyamoto M, Kimura Y (2000) Melt/solid polycondensation of glycolic acid to obtain high molecular weight poly(glycolic acid). Polymer 41(24):8725–8728

    Google Scholar 

  • Takenaka S, Ishida M, Serizawa M, Tanabe E, Otsuka K (2004) Formation of carbon nanofibers and carbon nanotubes through methane decomposition over supported cobalt catalysts. J Phys Chem B 108(31):11464–11472

    Google Scholar 

  • Talebian S, Mehrali M, Mohan S, Raghavendran HRB, Mehrali M, Kamarul K, Afifi AM, Abass AA (2014) Chitosan (PEO)/bioactive glass hybrid nanofibers for bone tissue engineering. RSC Adv 4:49144–49152

    Google Scholar 

  • Thangamani GJ, Deshmukh K, Sadasivuni KK, Chidambaram K, Ahamed MB, Ponnamma D, AlMaadeed MAA, Pasha SKK (2017) Recent advances in electrochemical biosensors and gas sensors based on graphene and carbon nanotubes (CNT): a review. Adv Mat Lett 8(3):196–205

    Google Scholar 

  • Tiwari A, Sharma Y, Hattori S, Terada D, Sharma AK, Turner APF, Kobayashi H (2013) Influence of poly(N-isopropylacrylamide)-CNT-polyaniline three dimensional electrospun microfabric scaffolds on cell growth and viability. Biopolymers 99(5):334–341

    Google Scholar 

  • Unnithan AR, Barakat NAM, Pichiah PBT, Gnanasekaran G, Nirmala R, Cha YS, Jung CH, El-Newehy M, Kim HY (2012) Wound-dressing materials with antibacterial activity from electrospun polyurethane–dextran nanofiber mats containing ciprofloxacin HCl. Carbohyd Polym 90(4):1786–1793

    Google Scholar 

  • Unnithan AR, Gnanasekaran G, Sathishkumar Y, Lee YS, Kim CS (2014) Electrospun antibacterial polyurethane-cellulose acetate-zein composite mats for wound dressing. Carbohyd Polym 102(15):884–892

    Google Scholar 

  • Valente TA, Silva DM, Gomes PS, Fernandes MH, Santos JD, Sencades V (2016) Effect of sterilization methods on electrospun poly(lactic acid) (PLA) fiber alignment for biomedical applications. ACS Appl Mater Interfaces 8(5):3241–3249

    Google Scholar 

  • Vaz CM, Van Tuij S, Bouten CVC, Baaijens FPT (2005) Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. Acta Biomateralia 1(5):575–582

    Google Scholar 

  • Venugopal J, Zhang YZ, Ramakrishna S (2011) Electrospun nanofibres: biomedical applications. Proc Inst Mech Eng Part N: J Nanomater Nanoeng Nanosyst 218(1):35–45

    Google Scholar 

  • Verreck G, Chun I, Rosenblatt J, Peeters J, Dijck AV, Mensch J, Noppe M, Brewster ME (2003) Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, non-biodegradable polymer. J Controlled Release 92(3):349–360

    Google Scholar 

  • Vongsetskul T, Kongjumnean P, Sunintaboon P, Rangkupan R, Tangboriboonrat P (2012) Electrospun composite fibers of polyvinylpyrrolidone with embedded poly(methyl methacrylate)-polyethyleneimine core-shell particles. Polym Bull 69:1115–1123

    Google Scholar 

  • Wang LX, Li XG, Yang YL (2001) Preparation, properties and applications of polypyrroles. React Funct Polym 47(2):125–139

    Google Scholar 

  • Wang H, Feng Y, Zhao H, Xiao R, Lu J, Zhang L, Guo J (2012) Electrospun hemocompatible PU/gelatin-heparin nanofibrous bilayer scaffolds as potential artificial blood vessels. Macromol Res 20(4):347–350

    Google Scholar 

  • Wang J, Cui X, Zhou Y, Xiang Q (2014) Core-shell PLGA/collagen nanofibers loaded with recombinant FN/CDHs as bone tissue engineering scaffolds. Connect Tissue Res 55(4):292–298

    Google Scholar 

  • Wang Y, Li P, Xiang P, Lu J, Yuan J, Shen J (2016a) Electrospun polyurethane/keratin/AgNP biocomposite mats for biocompatible and antibacterial wound dressings. J Mater Chem B 4(4):635–648

    Google Scholar 

  • Wang H, Lin J, Shen ZX (2016b) Polyaniline (PANi) based electrode materials for energy storage and conversion. J Sci: Adv Mater Dev 1(3):225–255

    MathSciNet  Google Scholar 

  • Wei K, Li Y, Mugishima H, Teramoto A, Abe K (2012) Fabrication of core-sheath structured fibers for model drug release and tissue engineering by emulsion electrospinning. Biotechnol J 7(5):677–685

    Google Scholar 

  • Weng L, Xie J (2015) Smart electrospun nanofibers for controlled drug release: recent advances and new perspectives. Curr Pharm Des 21(15):1944–1959

    Google Scholar 

  • Winger M, de Vries AH, Van Gunsteren WF (2009) Force-field dependence of the conformational properties of α, ω-dimethoxypolyethylene glycol. Mol Phys 107(13):1313–1321

    Google Scholar 

  • Wojasinski M, Bożyk J, Wasiak I, Ciach T (2014) Electrospun poly-l-lactic acid/nanohydroxyapatite nanofibrous composite as a potential bone tissue replacement material. Inzynieria I Aparatura Chemiczna 53(4):322–323

    Google Scholar 

  • Woo YI, Park BJ, Kim HL, Lee MH, Kim J, Yang YI, Kim JK, Tsubaki K, Han DW, Park JC (2010) The biological activities of (1,3)-(1,6)-β-d-glucan and porous electrospun PLGA membranes containing β-glucan in human dermal fibroblasts and adipose tissue-derived stem cells. Biomed Mater 5(4):1–8

    Google Scholar 

  • Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer-polycaprolactone in 21st century. Prog Polym Sci 35(10):1217–1256

    Google Scholar 

  • Wright JB, Lam K, Buret AG, Olson ME, Burrell RE (2002) Early healing events in a porcine model of contaminated wounds: effects of nanocrystalline silver on matrix metalloproteinases, cell apoptosis, and healing. Wound Repair Regeneration 10(3):141–151

    Google Scholar 

  • Wu HB, Bremmer DH, Nie HL, Quan J, Zhu IM (2015) Electrospun polyvinyl alcohol/carbon dioxide modified polyethyleneimine composite nanofiber scaffolds. J Biomater Appl 29(10):1407–1417

    Google Scholar 

  • Xin X, Hussain M, Mao JJ (2007) Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials 28(2):316–325

    Google Scholar 

  • Xu XL, Yang LX, Xu XY, Wang X, Chen XS, Liang QZ, Zeng J, Jing XB (2005) Ultrafine medicated fibers electrospun from W/O emulsions. J Controlled Release 108:33–42

    Google Scholar 

  • Xu X, Chen X, Xu X, Lu T, Wang X, Yang L, Jing X (2006) BCNU-loaded PEG/PLLA ultrafine fibers and their in vitro antitumor activity against Glioma C6 cells. J Controlled Release 114(3):307–316

    Google Scholar 

  • Xu X, Chen X, Ma P, Wang X, Jing X (2008) The release behavior of doxorubicin hydrochloride from medicated fibers prepared by emulsion-electrospinning. Eur J Pharm Biopharm 70(1):165–170

    Google Scholar 

  • Xu J, Zhang J, Gao W, Liang H, Wang H, Li J (2009a) Preparation of chitosan/PLA blend micro/nanofibers by electrospinning. Mater Lett 63(8):658–660

    Google Scholar 

  • Xu X, Chen X, Wang Z, Jing X (2009b) Ultrafine PEG-PlA fibers loaded with both paclitaxel and doxorubicin hydrochloric and their in vitro cytotoxicity. Eur J Pharm Biopharm 72(1):18–25

    Google Scholar 

  • Xu X, Zhong W, Zhou S, Trajtman A, Alfa M (2010) Electrospun PEG–PLA nanofibrous membrane for sustained release of hydrophilic antibiotics. J Appl Polym Sci 118(1):588–595

    Google Scholar 

  • Yang D, Li Y, Nie J (2007) Preparation of gelatin/PVA nanofibers and their potential application in controlled release of drugs. Carbohyd Polym 69(3):538–543

    Google Scholar 

  • Yang Y, Li X, Cui W, Zhou S, Tan R, Wang C (2008) Structural stability and release profiles of proteins from core-shell poly(dl-lactide) ultrafine fibers prepared by emulsion electrospinning. J Biomed Mater Res Part A 86(2):374–385

    Google Scholar 

  • Yemuland O, Imae T (2008) Synthesis and characterization of poly(ethyleneimine) dendrimers. Colloids Polym Sci 286(6–7):747–752

    Google Scholar 

  • Yeum JH, Park JH, Kim IK, Cheong IW (2011) Electrospinning fabrication and characterization of water soluble polymer/montmorillonite/silver nanocomposite nanofibers out of aqueous solution. In: Reddy B (ed) Advances in nanocomposites—synthesis, characterization and industrial applications. InTech, Rijeka. https://doi.org/10.5772/14720

    Chapter  Google Scholar 

  • You Y, Lee SW, Youk JH, Min BM, Lee SJ, Park WH (2005) In vitro degradation behavior of non-porous ultra-fine poly(glycolic acid)/poly(l-lactic acid) fibres and porous ultra-fine poly(glycolic acid) fibres. Polym Degrad Stab 90(3):441–448

    Google Scholar 

  • Yu Y, Kong L, Li L, Li N, Yan P (2015) Antitumor activity of doxorubicin-loaded carbon nanotubes incorporated poly(lactic-co-glycolic acid) electrospun composite nanofibers. Nanoscale Res Lett 10:343

    Google Scholar 

  • Zhang Y, Huang ZM, Xu X, Lim CT, Ramakrishna S (2004) Preparation of core-shell structured PCL-r-gelatin bi-component nanofibers by co-axial electrospinning. Chem Mater 16(18):3406–3409

    Google Scholar 

  • Zhang YZ, Venugopal JR, Huang ZM, Lim CT, Ramakrishna S (2005a) Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Biomacromolecules 6(5):2583–2589

    Google Scholar 

  • Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang ZM (2005b) Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biomater 72(1):156–165

    Google Scholar 

  • Zhang YZ, Wang X, Feng Y, Li J, Lim CT, Ramakrishna S (2006) Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(ε-caprolactone) nanofibers for sustained release. Biomacromolecules 7(4):1049–1057

    Google Scholar 

  • Zhou YS, Yang D, Chen X, Xu Q, Lu F, Nie J (2008) Electrospun water-soluble carboxyethyl chitosan/poly(vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration. Biomacromolecules 9(1):349–354

    Google Scholar 

  • Zintchenko A, Philipp A, Dehshahri A, Wagner E (2008) Simple modifications of branched PEI lead to highly efficient siRNA carriers with low toxicity. Bioconjug Chem 19(7):1448–1455

    Google Scholar 

  • Zulkifli FH, Shahitha F, Yusuff MM, Hamidon NN, Chaha SS (2013) Cross-linking effect on electrospun hydroxyethyl cellulose/poly(vinyl alcohol) nanofibrous scaffolds. Procedia Eng 53:689–695

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalim Deshmukh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deshmukh, K., Sankaran, S., Basheer Ahamed, M., Khadheer Pasha, S.K. (2019). Biomedical Applications of Electrospun Polymer Composite Nanofibres. In: Sadasivuni, K., Ponnamma, D., Rajan, M., Ahmed, B., Al-Maadeed, M. (eds) Polymer Nanocomposites in Biomedical Engineering . Lecture Notes in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-04741-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04741-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04740-5

  • Online ISBN: 978-3-030-04741-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics