Skip to main content

A Load-Balanced and Low-Delay Data Collection for Wireless Sensor Networks

  • Conference paper
  • First Online:
Computational Data and Social Networks (CSoNet 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11280))

Included in the following conference series:

  • 1740 Accesses

Abstract

Energy consumption of nodes and delay in data collection are both important issues in large-scale wireless sensor networks. It is a challenging problem to achieve the goal of balancing energy consumption of nodes and shortening data collection delay at the same time. The paper utilizes a mobile data collector to collect data in the network and proposes a delay-constrained data collection algorithm named LAWA. LAWA constructs a shortest path tree (named load-balanced fat tree) according to the energy of nodes and the number of hops among nodes. Theoretical analyses and massive simulations show that, LAWA cannot only balance the energy consumption of nodes to prolong the network lifetime, but also shorten the path length of the mobile data collector and reduce the delay in data collection when compared with other existing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang, S., Adeel, U., Tahir, Y., et al.: Practical opportunistic data collection in wireless sensor networks with mobile sinks. IEEE Trans. Mob. Comput. 16(5), 1420–1433 (2017)

    Article  Google Scholar 

  2. Zhan, C., Zeng, Y., Zhang, R.: Energy-efficient data collection in UAV enabled wireless sensor network. IEEE Wirel. Commun. Lett. 7(3), 328–331 (2017)

    Article  Google Scholar 

  3. Choudhari, E., Bodhe, K.D., Mundada, S.M.: Secure data aggregation in WSN using iterative filtering algorithm. In: International Conference on Innovative Mechanisms for Industry Applications, pp. 1–5. IEEE (2017)

    Google Scholar 

  4. Gatti, R., Kumar, S.S., Kumar, K.S., Prasad, P.R., et al.: Improvement of speed in data collection rate in tree based wireless sensor network. In: IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology, pp. 720–723. IEEE (2017)

    Google Scholar 

  5. Chen, C.C.: A novel data collection method with recharge plan for rechargeable wireless sensor networks. Wirel. Commun. Mob. Comput. 2018, 1–19 (2018)

    Google Scholar 

  6. Takaishi, D., Nishiyama, H., Kato, N., Miura, R.: Towards energy efficient big data gathering in densely distributed sensor networks. IEEE Trans. Emerg. Top. Comput. 2(3), 388–397 (2014)

    Article  Google Scholar 

  7. Zhang, X.W., Dai, H.P., Xu, L.J., Chen, G.H.: Mobility-Assisted data gathering strategies in WSNs. Ruan Jian Xue Bao/J. Softw. 24(2), 198–214 (2013). (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4349.htm

    Google Scholar 

  8. Olariu S, Stojmenovic I.: Design guidelines for maximizing lifetime and avoiding energy holes in sensor networks with uniform distribution and uniform reporting. In: Proceedings of the IEEE INFOCOM, pp. 1–12. IEEE Press, New York (2006)

    Google Scholar 

  9. Shah, R.C., Roy, S., Jain, S., Brunette, W.: Data mules: Modeling a three-tier architecture for sparse sensor networks. In: Proceedings of the ACM SNPA, pp. 30–41. IEEE Press, New York (2003)

    Google Scholar 

  10. Salarian, H., Chin, K.-W., Naghdy, F.: An energy-efficient mobile-sink path selection strategy for wireless sensor networks. IEEE Trans. Veh. Technol. 63(5), 2407–2419 (2014)

    Article  Google Scholar 

  11. Zhao, M., Yang, Y.Y.: A framework for mobile data gathering with load balanced clustering and MIMO uploading. In: Proceedings of the IEEE INFOCOM, pp. 2759–2767. IEEE Press, New York (2011)

    Google Scholar 

  12. Ma, M., Yang, Y.Y., Zhao, M.: Tour planning for mobile data-gathering mechanisms in wireless sensor networks. IEEE Trans. Veh. Technol. 62(4), 1472–1483 (2013)

    Article  Google Scholar 

  13. Zhao, M., Yang, Y.Y.: Bounded relay hop mobile data gathering in wireless sensor networks. IEEE Trans. Comput. 61(2), 265–277 (2012)

    Article  MathSciNet  Google Scholar 

  14. Ma, M, Yang, Y.Y.: Data gathering in wireless sensor networks with mobile collectors. In: In: IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2008, pp. 1–9 (2008)

    Google Scholar 

  15. Guo, S.T., Wang, C., Yang, Y.Y.: Mobile data gathering with wireless energy replenishment in rechargeable sensor networks. In: Proceedings of of the IEEE INFOCOM, pp. 1932–1940. IEEE Press, New York (2013)

    Google Scholar 

  16. Xing, G.L., Wang, T., Jia, W.J., Li, M.: Rendezvous design algorithms for wireless sensor networks with a mobile base station. In: Proceedings of the ACM MobiHoc, pp. 231–240. ACM Press, New York (2008)

    Google Scholar 

  17. Chipara, O., et al.: Real-time power-aware routing in sensor networks, In: 14th IEEE International Workshop on Quality of Service IWQoS 2006, pp. 83-92. IEEE (2006)

    Google Scholar 

  18. Pon, R., et al.: Networked infomechanical systems: a mobile embedded networked sensor platform. In: Proceedings of the IEEE IPSN, pp. 376–381. ACM/IEEE Press, New York (2005)

    Google Scholar 

  19. An, H.C., Kleinberg, R., Shmoys, D.B.: Improving christofides’ algorithm for the s-t path TSP. In: Proceedings of the ACM STOC, pp. 875–886. ACM Press, New York (2012)

    Google Scholar 

  20. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communication protocol for wireless microsensor networks. In: Proceedings of the IEEE HICSS, pp. 1–10. IEEE Press, New York (2000)

    Google Scholar 

  21. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: a scalable and robust communication paradigm for sensor networks. In: Proceedings of the ACM MobiCom, pp. 56–67. ACM Press, New York (2000)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (Grant nos. 61502540, 61562005, 61502057), the Natural Science Foundation of Guangxi Province (Grant no. 2015GXNSFAA139286), The Cultivation Plan For One Thousand Young and Middle-Aged Backbone Teachers in Guangxi Higher Education School (Guangxi Education People (2017) No. 49), the National Science Foundation of Hunan Province (Grant no. 2015JJ4077), and the China Scholarship Council Project (Grant no. 2015 [3012]).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junbin Liang or Huakun Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kui, X., Liang, J., Du, H., Zou, S., Liu, Z. (2018). A Load-Balanced and Low-Delay Data Collection for Wireless Sensor Networks. In: Chen, X., Sen, A., Li, W., Thai, M. (eds) Computational Data and Social Networks. CSoNet 2018. Lecture Notes in Computer Science(), vol 11280. Springer, Cham. https://doi.org/10.1007/978-3-030-04648-4_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04648-4_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04647-7

  • Online ISBN: 978-3-030-04648-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics