Skip to main content

Abstract

A commercial purity 304SS was irradiated to 5 dpa Kinchin-Pease (10 dpa full-cascade) using 2 meV protons at 360 °C. Post-irradiation annealing (PIA) was applied to reduce or remove IASCC susceptibility. This paper focuses on the links between irradiation-induced hardening and irradiated microstructures of the as-irradiated and PIA conditions; the irradiated microstructure is assessed by transmission electron microscopy (TEM) and atom probe tomography (APT) . Dislocation loops, Ni–Si clusters, and Cu-enriched clusters are present in the as-irradiated condition. When the dislocation loops are removed by PIA, ~40% of the as-irradiated hardness remains and can be rationally attributed to the solute clusters still present in the PIA microstructure. The observations indicate that hardening in the as-irradiated condition is controlled by both dislocation loops and solute clusters and suggest that radiation-induced solute clusters may be important to detailed understanding of IASCC (irradiation-assisted stress corrosion cracking) .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There are two options in SRIM for calculations of dose: “full-cascade” and “Kinchin-Pease.” A large number of studies across the years that applied proton-irradiation to investigate radiation damage calculated dose using the full-cascade option. However, a recent publication by Stoller et al. [22] established that the Kinchin-Pease option is more appropriate when comparing ion and neutron displacement damage. The Kinchin-Pease (K-P) value is a factor of 2 less than the full-cascade value; that is, 10 dpa (full-cascade) corresponds to 5 dpa (K-P).

  2. 2.

    The aggressiveness of post-irradiation annealing condition is captured by the parameter √DFet, the “iron diffusion distance” [16].

  3. 3.

    Toyama et al. reported two types of Ni/Si clusters, one that contained Mn and P and another that contained neither. However, they did not draw a distinction between the two populations in subsequent analysis.

  4. 4.

    Because of cluster/loop ratio they measured (loops by TEM and solute clusters by APT) was high, Toyama et al. “strongly suggested that Ni–Si precipitates mainly exist at sites independent of Frank loops”, although the suggestion was not directly verified by APT observation. In our study, the average linear density of Ni-rich clusters (actually Ni/Si rich clusters) on dislocations was determined by APT to be 12 clusters per 100 nm; and the cluster/loop ratio of proton-irradiated CP304 (14.6) is, in fact, higher than that measured by Toyama et al. for neutron-irradiated 304SS (6.9). In proton-irradiated CP304, the average dislocation loop diameter 9.4 nm according to APT (Table 3) [or 7.4 nm according to TEM (Table 2)]. Therefore, there are ~3.5 clusters are associated with the average dislocation loop. It follows that approximately (3.5/14.6) × 100% = 24% of the clusters are associated with dislocation loops, while the majority, ~76%, are “free clusters”.

  5. 5.

    In this paper, “clusters” and “precipitates” will be used interchangeably.

  6. 6.

    The model also does not account for any changes in hardness associated with the loss of solution hardening in the matrix when solutes are removed from the matrix to form clusters/precipitates.

  7. 7.

    Converted according to the empirical relation Δσy = 3.03 ΔHv [36].

  8. 8.

    An exact percentage contribution is difficult to provide because of the root-mean-square summation of the contributions of Frank loop and clusters.

References

  1. S.M. Bruemmer, E.P. Simonen, P.M. Scott, P.L. Andresen, G.S. Was, J.L. Nelson, J. Nucl. Mater. 274, 299–314 (1999)

    Article  CAS  Google Scholar 

  2. P. Scott, Final Review of the Cooperative Irradiation-Assisted Stress Corrosion Cracking Research Program. EPRI, Palo Alto, CA: 2010. 1020986

    Google Scholar 

  3. K. Fukuya, J. Nucl. Sci. Technol. 50(3), 213–254 (2013)

    Article  CAS  Google Scholar 

  4. C. Pokor, G. Courtemanche, B. Tanguy, J.-P. Massaud, N. Monteil, IASCC of Core Internals of PWRs: EDF R&D and Engineering program to assess internals lifetime management, in Fontevraud 7 Symposium—Contribution of Materials Investigations to Improve the Safety and Performance of LWRs, Avignon, France, 26–30 September 2010, Paris, France, SFEN

    Google Scholar 

  5. O.K. Chopra, A.S. Rao, J. Nucl. Mater. 409, 235–256 (2011)

    Article  CAS  Google Scholar 

  6. R.W. Bosch et al., J. Nucl. Mater. 461, 112–121 (2015)

    Article  CAS  Google Scholar 

  7. A. Etienne, B. Radiguet, P. Pareige, J.-P. Massoud, C. Pokor, J. Nucl. Mater. 382, 64–69 (2008)

    Article  CAS  Google Scholar 

  8. G. Was, Z. Jiao, Potential for Atom Probe Tomography in Understanding Irradiation Assisted Stress Corrosion Cracking: Characterization of Proton-Irradiated, Si-Containing Stainless Steels. EPRI, Palo Alto, CA: 2011. 1022815

    Google Scholar 

  9. Z. Jiao, G.S. Was, Acta Mater. 59(3), 1220–1238 (2011)

    Article  CAS  Google Scholar 

  10. T. Toyama, Y. Nozawa, W. Van Renterghem, Y. Matsukawa, M. Hatakeyama, Y. Nagai, A. Al Mazouzi, S. Van Dyck, J. Nucl. Mater. 418, 62–68 (2011)

    Article  CAS  Google Scholar 

  11. Y. Chen, P.H. Chou, E.A. Marquis, J. Nucl. Mater. 451, 130–136 (2014)

    Article  CAS  Google Scholar 

  12. P. Chou, N. Soneda, K. Nishida, K. Dohi, E.A. Marquis, Y. Chen, Proceedings of Fontevraud 8 Conference: Contribution of Materials Investigations and Operating Experience to LWR’s Safety, Performance and Reliability, Avignon, France, 15–18 September 2014

    Google Scholar 

  13. K. Fujii, K. Fukuya, J. Nucl. Mater. 469, 82–88 (2016)

    Article  CAS  Google Scholar 

  14. Z. Jiao, G. Was, Y. Chen, E. Marquis, Program on Technology Innovation: Effects of Post Irradiation Annealing on IASCC. EPRI, Palo Alto, CA: 2015. 3002005475

    Google Scholar 

  15. J.T. Busby, G.S. Was, E.A. Kenik, J. Nucl. Mater. 302, 20–40 (2002)

    Article  CAS  Google Scholar 

  16. K. Fukuya, M. Nakano, K. Fujii, T. Torimaru, Y. Kitsunai, J. Nucl. Sci. Technol. 41, 1218–1227 (2004)

    Article  CAS  Google Scholar 

  17. Z. Jiao, J. Hesterberg, G. Was, Effect of Post-Irradiation Annealing on Hardening, Localized Deformation and IASCC of a Proton-Irradiated 304 Stainless Steel, 17th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, Ottawa, Ontario, Canada, 9–13 August 2015

    Google Scholar 

  18. Z. Jiao, G.S. Was, J. Nucl. Mater. 382, 203–209 (2008)

    Article  CAS  Google Scholar 

  19. Z. Jiao, G.S. Was, J. Nucl. Mater. 407, 34–43 (2010)

    Article  CAS  Google Scholar 

  20. Z. Jiao, G.S. Was, J. Nucl. Mater. 408, 246–256 (2011)

    Article  CAS  Google Scholar 

  21. Z. Jiao, M. McMurtrey, G.S. Was, Scripta Mater. 65, 159–162 (2011)

    Article  CAS  Google Scholar 

  22. R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath, F.A. Garner, Nucl. Instrum. Methods. Phy. Res. B 310, 75–80 (2013)

    Article  CAS  Google Scholar 

  23. G. Gupta, Z. Jiao, A.N. Ham, J.T. Busby, G.S. Was, J. Nucl. Mater. 351, 162–173 (2006)

    Article  CAS  Google Scholar 

  24. K. Thompson et al., Ultramicroscopy 107(2–3), 131–139 (2007)

    Article  CAS  Google Scholar 

  25. T. Tsong, Surf. Sci. 70(1), 211–233 (1978)

    Article  CAS  Google Scholar 

  26. A. Etienne, B. Radiguet, P. Pareige, J. Nucl. Mater. 406(2), 251–256 (2010)

    Article  CAS  Google Scholar 

  27. K. Fukuya, K. Fujii, H. Nishioka, Y. Kitsunai, J. Nucl. Sci. Technol. 43(2), 159–173 (2006)

    Article  CAS  Google Scholar 

  28. D.J. Edwards, E.P. Simonen, F.A. Garner, L.R. Greenwood, B.M. Oliver, S.M. Bruemmer, J. Nucl. Mater. 317(1), 32–45 (2003)

    Article  CAS  Google Scholar 

  29. T. Takeuchi et al., J. Nucl. Mater. 402(2), 93–101 (2010)

    Article  CAS  Google Scholar 

  30. P. Auger et al., J. Nucl. Mater. 225, 225–230 (1995)

    Article  CAS  Google Scholar 

  31. K. Fujii et al., J. Nucl. Mater. 340(2), 247–258 (2005)

    Article  CAS  Google Scholar 

  32. A. Etienne, B. Radiguet, P. Pareige, J.-P. Massoud, C. Pokor, J. Nucl. Mater. 382(1), 64–69 (2008)

    Article  CAS  Google Scholar 

  33. E. Kenik, J. Busby, Mater. Sci. Eng. R 73(7), 67–83 (2012)

    Article  CAS  Google Scholar 

  34. W. Van Renterghem, M.J. Konstantinović, M. Vankeerberghen, J. Nucl. Mater. 452, 158–165 (2014)

    Article  CAS  Google Scholar 

  35. A. Jenssen, J. Stjärnsäter, T. Torimaru, Y. Kitsunai, BWRVIP-221: BWR Vessel and Internals Project, Crack Growth in High Fluence BWR Materials—Phase1: Crack Growth Rate Testing of Types 304L and 316L at Doses Ranging from 3.5 to 13 dpa. EPRI, Palo Alto, CA: 2009. 1019079

    Google Scholar 

  36. J.T. Busby, M.C. Hash, G.S. Was, J. Nucl. Mater. 336, 267–278 (2005)

    Article  CAS  Google Scholar 

  37. G.E. Lucas, J. Nucl. Mater. 205, 287 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

The work presented in this paper was funded by the Electric Power Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Chou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Chen, Y. et al. (2019). Solute Clustering in As-irradiated and Post-irradiation-Annealed 304 Stainless Steel. In: Jackson, J., Paraventi, D., Wright, M. (eds) Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-04639-2_147

Download citation

Publish with us

Policies and ethics