Skip to main content

Comparative Study on Short Time Oxidation of Un-Irradiated and Protons Pre-Irradiated 316L Stainless Steel in Simulated PWR Water

  • Conference paper
  • First Online:
Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors

Abstract

Achieving a better understanding of the Irradiation Assisted Stress Corrosion Cracking resistance is one of the issues to improve the durability of Pressurized Water Reactors. To do so, assessing the interaction of irradiation defects with oxidation of internal vessel bolts, made of 316L alloy, is crucial. In this work we studied the effect of protons pre-irradiations at 1 dpa on the very first steps of oxidation (1 min < t < 24 h) in simulated PWR environment. The morphology of the oxide layer was investigated using optical microscopy and Scanning Electron Microscopy. The oxidation kinetics for short term oxidation is discussed based on the obtained results. It was observed that crystallographic orientation has an effect on the oxidation process. The level of cold-work and the presence of precipitates were taken into account and both seemed to accelerate the oxidation kinetic. Finally, irradiation also tended to speed-up the oxidation phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S.M. Bruemmer et al., Radiation-induced material changes and susceptibility to intergranular failure of light-water-reactor core internals. J. Nucl. Mater. 274(3), 299–314 (1999)

    Article  CAS  Google Scholar 

  2. G.S. Was, P.L. Andresen, Irradiation-assisted stress-corrosion cracking in austenitic alloys. JOM 44(4), 8–13 (1992)

    Article  CAS  Google Scholar 

  3. C. Pokor et al., Irradiation damage in 304 and 316 stainless steels: experimental investigation and modeling. Part I: Evolution of the microstructure. J. Nucl. Mater. 326(1), 19–29 (2004)

    Article  CAS  Google Scholar 

  4. D.J. Edwards, E.P. Simonen, S.M. Bruemmer, Evolution of fine-scale defects in stainless steels neutron-irradiated at 275 ℃. J. Nucl. Mater. 317(1), 13–31 (2003)

    Article  CAS  Google Scholar 

  5. S.J. Zinkle, P.J. Maziasz, R.E. Stoller, Dose dependence of the microstructural evolution in neutron-irradiated austenitic stainless steel. J. Nucl. Mater. 206(2), 266–286 (1993)

    Article  CAS  Google Scholar 

  6. S.J. Zinkle, R.L. Sindelar, Defect microstructures in neutron-irradiated copper and stainless steel. J. Nucl. Mater. 155, 1196–1200 (1988)

    Article  Google Scholar 

  7. A. Etienne, Etude des effets d’irradiations et de la nanostructuration dans des aciers austénitiques inoxydables (Ph.D thesis, Université de Rouen, Rouen, 2009)

    Google Scholar 

  8. P.J. Maziasz, Overview of microstructural evolution in neutron-irradiated austenitic stainless steels. J. Nucl. Mater. 205, 118–145 (1993)

    Article  CAS  Google Scholar 

  9. T.R. Allen et al., The effect of dose rate on the response of austenitic stainless steels to neutron radiation. J. Nucl. Mater. 348(1–2), 148–164 (2006)

    Article  CAS  Google Scholar 

  10. B.H. Sencer et al., Microstructural origins of radiation-induced changes in mechanical properties of 316 L and 304 L austenitic stainless steels irradiated with mixed spectra of high-energy protons and spallation neutrons. J. Nucl. Mater. 296(1–3), 112–118 (2001)

    Article  CAS  Google Scholar 

  11. D.J. Edwards et al., Influence of irradiation temperature and dose gradients on the microstructural evolution in neutron-irradiated 316SS. J. Nucl. Mater. 317(1), 32–45 (2003)

    Article  CAS  Google Scholar 

  12. E.C. Potter, G.M.W. Mann, Oxidation of mild steel in high-temperature aqueous systems. in Presented at the 1st International Congress of Metallic Corrosion (London, 1961) 417

    Google Scholar 

  13. S. Perrin et al., Influence of irradiation on the oxide film formed on 316 L stainless steel in PWR primary water. Oxid. Met. 80(5–6), 623–633 (2013)

    Article  CAS  Google Scholar 

  14. J. Gupta, Intergranular Stress Corrosion Cracking of Ion Irradiated 304L Stainless Steel in PWR Environment (Ph.D thesis, Institut National Polytechnique de Toulouse, Toulouse, 2016)

    Google Scholar 

  15. M. Dumerval, Effet des défauts d’implantation sur la corrosion des aciers inoxydables austénitiques en milieu primaire des réacteurs à eau pressurisée (Ph.D thesis, Université de Grenoble, Grenoble, 2014)

    Google Scholar 

  16. A. Machet, Etude des premiers stades d’oxydation d’alliages inoxydables dans l’eau à haute température (Ph.D thesis, Université Pierre et Marie Curie—Paris VI, Paris, 2004)

    Google Scholar 

  17. S. Gardey, Etude de la corrosion généralisée des alliages 600, 690 et 800 en milieu primaire—Contribution à la compréhension des mécanismes (Ph.D thesis, Université Pierre et Marie Curie, Paris, 1998)

    Google Scholar 

  18. R. Soulas, Effet de la cristallographie sur les premiers stades de l’oxydation des aciers austénitiques 316L, (Ph.D thesis, Institut National Polytechnique de Grenoble, Grenoble, 2012)

    Google Scholar 

  19. R. Soulas et al., TEM investigations of the oxide layers formed on a 316L alloy in simulated PWR environment. J. Mater. Sci. 48(7), 2861–2871 (2013)

    Article  CAS  Google Scholar 

  20. X. Sun, Study of deformed layer formed during mechnical stages of specimen preparation for EBSD and TEM (Report EDF R&D and PHELMA, Moret Sur Loing, 2016)

    Google Scholar 

  21. G.S. Was, T.R. Allen, Radiation damage from different particle types, Radiat. Eff. Solids—NATO Science Series II—Mathematics, Physics and Chemistry (235, Springer, 2007), 65–98

    Google Scholar 

  22. G.S. Was, Fundamentals of Radiation Materials Science (Springer, Berlin, 2007)

    Google Scholar 

  23. G.S. Was et al., Emulation of neutron irradiation effects with protons: validation of principle. J. Nucl. Mater. 300, 198–216 (2002)

    Article  CAS  Google Scholar 

  24. B.H. Sencer et al., Proton irradiation emulation of PWR neutron damage microstructures in solution annealed 304 and cold-worked 316 stainless steels. J. Nucl. Mater. 323(1), 18–28 (2003)

    Article  CAS  Google Scholar 

  25. J.F. Ziegler, J.P. Biersack, in The Stopping and Range of Ions in Matter,ed. by D.A. Bromley. Treatise on Heavy-Ion Science (6: Astrophysics, Chemistry, and Condensed Matter, Boston, MA: Springer US, 1985), 93–129

    Google Scholar 

  26. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM – The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B: Interact. Mater. Atoms 268(11–12), 1818–1823 (2010)

    Article  CAS  Google Scholar 

  27. R.E. Stoller et al., On the use of SRIM for computing radiation damage exposure. Nucl. Instrum. Methods Phys. Res. Sect. B 310, 75–80 (2013)

    Article  CAS  Google Scholar 

  28. T. Couvant, A. Herbelin, Adaptation d’une cellule d’oxydation sur la boucle Titane - Cahier des clauses techniques particulières (Note EDF, EDF R&D, Moret-sur-Loing, H-T29-2007-03241-FR, 2008)

    Google Scholar 

  29. G. Wranglen, Pitting and sulphide inclusions in steel. Corros. Sci. 14(5), 331–349 (1974)

    Article  Google Scholar 

  30. J. Stewart, D.E. Williams, The initiation of pitting corrosion on austenitic stainless steel: on the role and importance of sulphide inclusions. Corros. Sci. 33(3), 457–474 (1992)

    Article  CAS  Google Scholar 

  31. T.L. Sudesh, L. Wijesinghe, D.J. Blackwood, Real time pit initiation studies on stainless steels: the effect of sulphide inclusions. Corros. Sci. 49(4), 1755–1764 (2007)

    Article  CAS  Google Scholar 

  32. M. Warzee et al., Effect of surface treatment on the corrosion of stainless steels in high-temperature water and steam. J. Electrochem. Soc. 112(7), 670–674 (1965)

    Article  CAS  Google Scholar 

  33. S.E. Ziemniak, M. Hanson, P.C. Sander, Electropolishing effects on corrosion behavior of 304 stainless steel in high temperature, hydrogenated water. Corros. Sci. 50(9), 2465–2477 (2008)

    Article  CAS  Google Scholar 

  34. S. Ghosh, M.K. Kumar, V. Kain, High temperature oxidation behavior of 304L stainless steel—Effect of surface working operations. Appl. Surf. Sci. 264, 312–319 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank O. Wendling, T. Sauvage, A. Bellamy and P. Desgardin for setting up the irradiation experiment and carrying out the irradiations and, T. Girard (EDF R&D) for conducting the oxidation tests. The authors would also like to acknowledge M. Mahé (EDF R&D) for the EDXS analysis of the precipitates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Boisson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Boisson, M. et al. (2019). Comparative Study on Short Time Oxidation of Un-Irradiated and Protons Pre-Irradiated 316L Stainless Steel in Simulated PWR Water. In: Jackson, J., Paraventi, D., Wright, M. (eds) Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-04639-2_142

Download citation

Publish with us

Policies and ethics