Skip to main content

Distributed Optimization in Multi-agent Networks Using One-bit of Relative State Information

  • Chapter
  • First Online:
Uncertainty in Complex Networked Systems

Part of the book series: Systems & Control: Foundations & Applications ((SCFA))

  • 929 Accesses

Abstract

This chapter is concerned with the design of distributed discrete-time algorithms to cooperatively solve an additive cost optimization problem in multi-agent networks. The striking feature of our distributed algorithms lies in the use of only the sign of relative state information between neighbors, which substantially differentiates our algorithms from others in the existing literature. Moreover, the algorithm does not require the interaction matrix to be doubly-stochastic. We first interpret the proposed algorithms in terms of the penalty method in optimization theory and then perform non-asymptotic analysis to study convergence for static network graphs. Compared with the celebrated distributed subgradient algorithms, which however use the exact relative state information, the convergence speed is essentially not affected by the loss of information. We also extend our results to the cases of deterministically and randomly time-varying graphs. Finally, we validate the theoretical results by simulations.

Parts of the results in this chapter have previously been appeared in [26,27,28].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beck A, Sabach S (2015) Weiszfelds method: Old and new results. Journal of Optimization Theory and Applications 164(1):1–40

    Article  MathSciNet  Google Scholar 

  2. Bertsekas DP (2015) Convex Optimization Algorithms. Athena Scientific Belmont

    Google Scholar 

  3. Borkar VS (2008) Stochastic approximation: a dynamical systems viewpoint. Baptism’s 91 Witnesses

    Google Scholar 

  4. Cevher V, Becker S, Schmidt M (2014) Convex optimization for big data: Scalable, randomized, and parallel algorithms for big data analytics. IEEE Signal Processing Magazine 31(5):32–43

    Article  Google Scholar 

  5. Chen G, Lewis FL, Xie L (2011) Finite-time distributed consensus via binary control protocols. Automatica 47(9):1962–1968

    Article  MathSciNet  Google Scholar 

  6. Clarke FH, Ledyaev YS, Stern RJ, Wolenski PR (2008) Nonsmooth Analysis and Control Theory, vol 178. Springer Science & Business Media

    Google Scholar 

  7. Cohen MB, Lee YT, Miller G, Pachocki J, Sidford A (2016) Geometric median in nearly linear time. In: Proceedings of the forty-eighth annual ACM symposium on Theory of Computing, ACM, pp 9–21

    Google Scholar 

  8. Deo N (1974) Graph Theory with Applications to Engineering and Computer Science. Courier Dover Publications

    Google Scholar 

  9. Franceschelli M, Giua A, Pisano A (2017) Finite-time consensus on the median value with robustness properties. IEEE Transactions on Automatic Control 62(4):1652–1667

    Article  MathSciNet  Google Scholar 

  10. Kan Z, Shea JM, Dixon WE (2016) Leader–follower containment control over directed random graphs. Automatica 66:56–62

    Article  MathSciNet  Google Scholar 

  11. Li T, Fu M, Xie L, Zhang J (2011) Distributed consensus with limited communication data rate. IEEE Transactions on Automatic Control 56(2):279–292

    Article  MathSciNet  Google Scholar 

  12. Lin P, Ren W, Farrell JA (2017) Distributed continuous-time optimization: nonuniform gradient gains, finite-time convergence, and convex constraint set. IEEE Transactions on Automatic Control 62(5):2239–2253

    Article  MathSciNet  Google Scholar 

  13. Magnússon S, Enyioha C, Li N, Fischione C, Tarokh V (2017) Convergence of limited communications gradient methods. IEEE Transactions on Automatic Control 63(5):1356–1371

    Google Scholar 

  14. Mokhtari A, Ling Q, Ribeiro A (2017) Network Newton distributed optimization methods. IEEE Transactions on Signal Processing 65(1):146–161

    Article  MathSciNet  Google Scholar 

  15. Nedić A, Olshevsky A (2015) Distributed optimization over time-varying directed graphs. IEEE Transactions on Automatic Control 60(3):601–615

    Article  MathSciNet  Google Scholar 

  16. Nedic A, Ozdaglar A (2009) Distributed subgradient methods for multi-agent optimization. IEEE Transactions on Automatic Control 54(1):48–61

    Article  MathSciNet  Google Scholar 

  17. Nedić A, Olshevsky A, Rabbat MG (2017) Network topology and communication-computation tradeoffs in decentralized optimization. In: Proceedings of the IEEE, vol 106, no 5, May 2018

    Article  Google Scholar 

  18. Olfati-Saber R, Murray RM (2004) Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control 49(9):1520–1533

    Article  MathSciNet  Google Scholar 

  19. Pu Y, Zeilinger MN, Jones CN (2017) Quantization design for distributed optimization. IEEE Transactions on Automatic Control 62(5):2107–2120

    Article  MathSciNet  Google Scholar 

  20. Shi W, Ling Q, Wu G, Yin W (2015) Extra: An exact first-order algorithm for decentralized consensus optimization. SIAM Journal on Optimization 25(2):944–966

    Article  MathSciNet  Google Scholar 

  21. Wang H, Li C (2017) Distributed quantile regression over sensor networks. IEEE Transactions on Signal and Information Processing over Networks pp 1–1, 10.1109/TSIPN.2017.2699923

    Google Scholar 

  22. Xie P, You K, Tempo R, Song S, Wu C (2018) Distributed convex optimization with inequality constraints over time-varying unbalanced digraphs. IEEE Transactions on Automatic Control PP(99):1–1, 10.1109/TAC.2018.2816104

    Google Scholar 

  23. Yi P, Hong Y (2014) Quantized subgradient algorithm and data-rate analysis for distributed optimization. IEEE Transactions on Control of Network Systems 1(4):380–392

    Article  MathSciNet  Google Scholar 

  24. You K, Xie L (2011) Network topology and communication data rate for consensusability of discrete-time multi-agent systems. IEEE Transactions on Automatic Control 56(10):2262–2275

    Article  MathSciNet  Google Scholar 

  25. You K, Tempo R, Xie P (2018) Distributed algorithms for robust convex optimization via the scenario approach. IEEE Transactions on Automatic Control

    Google Scholar 

  26. Zhang J, You K (2018) Distributed optimization with binary relative information over deterministically time-varying graphs. To appear in the 57th IEEE Conference on Decision and Control, Miami Beach, FL, USA

    Google Scholar 

  27. Zhang J, You K, Başar T (2017) Distributed discrete-time optimization by exchanging one bit of information. In: 2018 annual American Control Conference (ACC), IEEE, pp 2065–2070

    Google Scholar 

  28. Zhang J, You K, BaĹźar T (2018) Distributed discrete-time optimization in multi-agent networks using only sign of relative state. Accepted by IEEE Transactions on Automatic Control

    Google Scholar 

Download references

Acknowledgements

The authors would very much like to thank Professor Tamer BaĹźar for the stimulating discussions on this topic. This work was supported by the National Natural Science Foundation of China under Grant No. 61722308, and National Key Research and Development Program of China under Grant No. 2017YFC0805310.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keyou You .

Editor information

Editors and Affiliations

Appendix: Proof of Theorem 4

Appendix: Proof of Theorem 4

We first show that \(\widetilde{d}(\rho )<\infty \). Since \(\widetilde{f}_\lambda (x)\) is convex, \(\widetilde{\mathscr {X}}(\rho )\) is convex and \(\mathscr {X}^\star \subseteq \widetilde{\mathscr {X}}(\rho )\) for any \(\rho >0\). One can verify that \(\widetilde{\mathscr {X}}(\rho )-\mathscr {X}^\star \) is bounded. If \(\widetilde{\mathscr {X}}(\rho )-\mathscr {X}^\star \) is empty, then \(\widetilde{d}(\rho )=0\), otherwise \(0\le \widetilde{d}(\rho )=\max _{x\in \widetilde{\mathscr {X}}(\rho )}\min _{x^\star \in \mathscr {X}^\star }|x-x^\star |=\max _{x\in \widetilde{\mathscr {X}}(\rho )-\mathscr {X}^\star }\min _{x^\star \in \mathscr {X}^\star }|x-x^\star |<\infty \).

Then, we claim the following.

Claim 1: If \(\Vert \mathbf {x}^{k}-x^\star {\mathbbm {1}}\Vert >c_\rho \) for all \(x^\star \in \mathscr {X}^\star \), then \(\widetilde{f}_\lambda (\mathbf {x}^k)-f^\star >{\rho c_a^2}/{2}\).

Recall from (15) that

$$ \begin{aligned}&\widetilde{f}_\lambda (\mathbf {x}^k)-f^\star \ge f(\bar{x}^k)-f^\star +(\lambda a_\text {min}^{(l)}-\frac{1}{2} cn)v(\mathbf {x}^k), \forall k. \end{aligned} $$

This implies that if either \(f(\bar{x}^k)-f^\star >{\rho c_a^2}/{2}\) or \(v(\mathbf {x}^k)>\frac{\rho c_a^2}{2\lambda a_\text {min}^{(l)}- cn}\), then \(\widetilde{f}_\lambda (\mathbf {x}^k)-f^\star >{\rho c_a^2}/{2}\). Let

$$c_\rho :=2\sqrt{n}\max \{\widetilde{d}(\rho ),\frac{\rho c_a^2}{2\lambda a_\text {min}^{(l)}- cn}\}.$$

Since

$$ \begin{aligned} c_\rho&<\Vert \mathbf {x}^{k}-x^\star {\mathbbm {1}}\Vert \le \Vert \mathbf {x}^{k}-\bar{x}^k{\mathbbm {1}}\Vert +\Vert \bar{x}^k{\mathbbm {1}}-x^\star {\mathbbm {1}}\Vert \\&\le \sqrt{n}v(\mathbf {x}^k)+\sqrt{n}|\bar{x}^k-x^\star | \end{aligned} $$

we obtain that \(v(\mathbf {x}^k)>c_\rho /(2\sqrt{n})\ge \frac{\rho c_a^2}{2\lambda a_\text {min}^{(l)}- cn}\) or \(|\bar{x}^k-x^\star |>c_\rho /(2\sqrt{n})\ge \widetilde{d}(\rho )\). For the former case we have \(\widetilde{f}_\lambda (\mathbf {x}^k)-f^\star >{\rho c_a^2}/{2}\). For the latter case, \(\bar{x}^k\notin \widetilde{\mathscr {X}}(\rho )\), which by the definition of \(\widetilde{\mathscr {X}}(\rho )\) implies \(\widetilde{f}_\lambda (\mathbf {x}^k)-f^\star >{\rho c_a^2}/{2}\).

Claim 2: There is \(x_0^\star \in \mathscr {X}^\star \) such that \(\liminf _{k\rightarrow \infty } \Vert \mathbf {x}^{k}-x_0^\star {\mathbbm {1}}\Vert \le c_\rho \).

Otherwise, there exists \(k_0>0\) such that

$$\Vert \mathbf {x}^{k}-x^\star {\mathbbm {1}}\Vert> c_\rho , \forall x^\star \in \mathscr {X}^\star , \forall k>k_0.$$

By Claim 1, there exists some \(\varepsilon >0\) such that \(\widetilde{f}_\lambda (\mathbf {x}^k)-f^\star >{\rho c_a^2}/{2}+\varepsilon \) for all \(k>k_0\). Together with (18), it yields that

$$\begin{aligned} \Vert \mathbf {x}^{k+1}-x^\star {\mathbbm {1}}\Vert ^2&\le \Vert \mathbf {x}^{k}-x^\star {\mathbbm {1}}\Vert ^2-2\rho (\widetilde{f}_\lambda (\mathbf {x}^k)-f^\star )+\rho ^2c_a^2 \\&\le \Vert \mathbf {x}^{k}-x^\star {\mathbbm {1}}\Vert ^2-2\rho (\frac{\rho c_a^2}{2}+\varepsilon )+\rho ^2c_a^2 \nonumber \\&=\Vert \mathbf {x}^{k}-x^\star {\mathbbm {1}}\Vert ^2-2\rho \varepsilon .\nonumber \end{aligned}$$
(38)

Summing this relation implies that for all \(k>k_0\),

$$\begin{aligned}&\Vert \mathbf {x}^{k+1}-x^\star {\mathbbm {1}}\Vert ^2\le \Vert \mathbf {x}^{k_0}-x^\star {\mathbbm {1}}\Vert ^2-2(k+1-k_0)\rho \varepsilon , \end{aligned}$$

which clearly cannot hold for a sufficiently large k. Thus, we have verified Claim 2.

Claim 3: There is \(x^\star \in \mathscr {X}^\star \) such that \(\limsup _{k\rightarrow \infty } \Vert \mathbf {x}^{k}-x^\star {\mathbbm {1}}\Vert \le c_\rho +\rho c_a\).

Otherwise, for any \(x^\star \in \mathscr {X}^\star \), there must exist a subsequence \(\{\mathbf {x}^k\}_{k\in \mathscr {K}}\) (which depends on \(x^\star \)) such that for all \(k\in \mathscr {K}\),

$$\begin{aligned} \Vert \mathbf {x}^{k}-x^\star {\mathbbm {1}}\Vert >c_\rho +\rho c_a. \end{aligned}$$
(39)

Notice that the penalty function \(h(\mathbf {x})\) can be represented as

$$\begin{aligned} h(\mathbf {x})&=\sum _{e=1}^m a_e |\mathbf {b}_e^\mathsf {T}\mathbf {x}|. \end{aligned}$$

where \(a_e\) is the weight of edge e. The subdifferential of \(h(\mathbf {x})\) is then given by

$$\begin{aligned} \partial h(\mathbf {x})=\sum _{e=1}^ma_e \text {SGN}(\mathbf {b}_e^\mathsf {T}\mathbf {x})\mathbf {b}_e=BA_e\text {SGN}(B^\mathsf {T}\mathbf {x}) \end{aligned}$$
(40)

where \(A_e=\text {diag}\{a_1,...,a_m\}\). Then, it follows from (40) that

where the second inequality follows from

$$ \begin{aligned} \Vert BA_e\text {sgn}(B^\mathsf {T}\mathbf {x}^k)\Vert&\le \sqrt{n}\Vert BA_e\text {sgn}(B^\mathsf {T}\mathbf {x}^k)\Vert _\infty \\&\le \sqrt{n}\Vert BA_e\Vert _\infty \Vert \text {sgn}(B^\mathsf {T}\mathbf {x}^k)\Vert _\infty \\&\le \sqrt{n}\max _{i}\sum _{j=1}^na_{ij}=\sqrt{n}\Vert A\Vert _\infty . \end{aligned} $$

Thus, we obtain that for all \(k\in \mathscr {K}\),

$$\begin{aligned} \Vert \mathbf {x}^{k-1}-x^\star {\mathbbm {1}}\Vert \ge \Vert \mathbf {x}^{k}-x^\star {\mathbbm {1}}\Vert -\rho c_a>c_\rho . \end{aligned}$$
(41)

By Claim 2, there must exist some \(k_1\in \mathscr {K}\) and \(k_1>k_0\) such that

$$\begin{aligned}&\Vert \mathbf {x}^{k_1-1}-x_0^\star {\mathbbm {1}}\Vert \le c_\rho +\rho c_a. \end{aligned}$$

Together with (41), it implies that

$$\begin{aligned} c_\rho <\Vert \mathbf {x}^{k_1-1}-x_0^\star {\mathbbm {1}}\Vert \le c_\rho +\rho c_a. \end{aligned}$$
(42)

Hence, it follows from Claim 1 that \(\widetilde{f}_\lambda (\mathbf {x}^{k_1-1})-f^\star >{\rho c_a^2}/{2}\), which together with (38) and (42) yields that

$$\begin{aligned} \Vert \mathbf {x}^{k_1}-x_0^\star {\mathbbm {1}}\Vert \le \Vert \mathbf {x}^{k_1-1}-x_0^\star {\mathbbm {1}}\Vert \le c_\rho +\rho c_a. \end{aligned}$$
(43)

Setting \(x^\star =x_0^\star \) in (39), we have \(\Vert \mathbf {x}^{k_1}-x_0^\star {\mathbbm {1}}\Vert >c_\rho +\rho c_a.\) This contradicts (43), and hence verifies Claim 3.

In view of (19), the proof is completed. \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, J., You, K. (2018). Distributed Optimization in Multi-agent Networks Using One-bit of Relative State Information. In: Başar, T. (eds) Uncertainty in Complex Networked Systems. Systems & Control: Foundations & Applications. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-04630-9_13

Download citation

Publish with us

Policies and ethics