Skip to main content

Role of Teachers as Facilitators of the Interplay Physics and Mathematics

  • Chapter
  • First Online:
Mathematics in Physics Education

Abstract

In this chapter the role of teachers in teaching mathematization is discussed. As a basis a model for the pedagogical content knowledge, specifically adapted for the role of mathematics in physics, was developed and validated with an interview study with experienced physics teachers. Different foci of teachers with respect to their teaching strategies are being identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Al-Omari, W., & Miqdadi, R. (2014). The epistemological perceptions of the relationship between physics and mathematics and its effect on problem-solving among pre-service teachers at Yarmouk university in Jordan. International Education Studies, 7(5), 39–48.

    Article  Google Scholar 

  • Ataide, A. R. P. D., & Greca, I. M. (2013). Epistemic views of the relationship between physics and mathematics: Its influence on the approach of undergraduate students to problem solving. Science & Education, 22, 1405–1421.

    Article  Google Scholar 

  • Baumert, J., & Kunter, M. (2013). The COACTIV model of teachers’ professional competence. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.), Cognitive activation in the mathematics classroom and professional competence of teachers (pp. 25–48). Boston: Springer.

    Chapter  Google Scholar 

  • BaÅŸkan, Z., Alev, N., & Karal, I. S. (2010). Physics and mathematics teachers’ ideas about topics that could be related or integrated. Procedia – Social and Behavioral Sciences, 2(2), 1558–1562.

    Article  Google Scholar 

  • Bodin, M., & Winberg, M. (2012). Role of beliefs and emotions in numerical problem solving in university physics education. Physical Review Special Topics – Physics Education Research, 8(1), 010108.

    Article  Google Scholar 

  • Brahmia, S. M. (2014). Mathematization in introductory physics. Ph.D. Thesis, Rutgers University-Graduate School, New Brunswick.

    Google Scholar 

  • Carrejo, D. J., & Marshall, J. (2007). What is mathematical modelling? Exploring prospective teachers’ use of experiments to connect mathematics to the study of motion. Mathematics Education Research Journal, 19(1), 45–76.

    Article  Google Scholar 

  • Cauet, E., Liepertz, S., Borowski, A., & Fischer, H. E. (2015). Does it matter what we measure? Domain-specific professional knowledge of physics teachers. Schweizerische Zeitschrift für Bildungswissenschaften, 37(3), 462–479.

    Google Scholar 

  • Etkina, E. (2010). Pedagogical content knowledge and preparation of high school physics teachers. Physical Review Special Topics – Physics Education Research, 6(2), 020110.

    Article  Google Scholar 

  • Fazio, C., & Spagnolo, F. (2008). Conceptions on modelling processes in Italian high-school prospective mathematics and physics teachers. South African Journal of Education, 28(4), 469–487.

    Google Scholar 

  • Freitas, I. M., Jiménez, R., & Mellado, V. (2004). Solving physics problems: The conceptions and practice of an experienced teacher and an inexperienced teacher. Research in Science Education, 34(1), 113–133.

    Article  Google Scholar 

  • Gramzow, Y., Riese, J., & Reinhold, P. (2013). Modellierung fachdidaktischen Wissens angehender Physiklehrkräfte- Modelling Prospective Teachers’ knowledge of Physics Education. ZfDN (Zeitschrift für Didaktik der Naturwissenschaften), 19, 7–30.

    Google Scholar 

  • Khalili, P. (2016). Mathematical needs in the physics classroom. Ph.D thesis, Education: Faculty of Education.

    Google Scholar 

  • Kirschner, S., Borowski, A., Fischer, H. E., Gess-Newsome, J., & von Aufschnaiter, C. (2016). Developing and evaluating a paper-and-pencil test to assess components of physics teachers’ pedagogical content knowledge. International Journal of Science Education, 38(8), 1343–1372.

    Article  Google Scholar 

  • Lehavi, Y., Bagno, E., Eylon, B., Mualem, R., Pospiech, G., Böhm, U., & others (2015). Towards a PCK of physics and mathematics interplay. In C. Fazio, S. Mineo, & R. Maria (Eds.), The GIREP MPTL 2014 Conference Proceedings (pp. 843–853). Palermo: Università degli Studi di Palermo.

    Google Scholar 

  • Lehavi, Y., Bagno, E., Eylon, B.-S., Mualem, R., Pospiech, G., Böhm, U., Krey, O., & Karam, R. (2017). Classroom evidence of teachers’ PCK of the interplay of physics and mathematics. In T. Greczylo et al. (Eds.), Key competences in physics teaching and learning (pp. 95–104). Cham: Springer.

    Chapter  Google Scholar 

  • Loughran, J., Berry, A., & Mulhall, P. (2012). Portraying PCK. In J. Loughran et al. (Eds.), Understanding and developing science teachers’ pedagogical content knowledge (pp. 15–23). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, sources, and development of pedagogical content knowledge for science teaching. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical content knowledge (pp. 95–132). Heidelberg: Springer.

    Google Scholar 

  • Mulhall, P., & Gunstone, R. (2007). Views about physics held by physics teachers with differing approaches to teaching physics. Research in Science Education, 38(4), 435–462.

    Article  Google Scholar 

  • Pietrocola, M. (2008). Mathematics as structural language of physical thought. In M. Vicentini & E. Sassi (Eds.), Connecting research in physics education with teacher education. ICPE – Book (Vol. 2). New Delhi: International Commission on Physics Education.

    Google Scholar 

  • Riese, J. (2010). Empirische Erkenntnisse zur Wirksamkeit der universitären Lehrerbildung – Indizien für notwendige Veränderungen der fachlichen Ausbildung von Physiklehrkräften. PhyDid A-Physik und Didakt. Schule und Hochschule, 9(1), 25–33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gesche Pospiech .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pospiech, G., Eylon, BS., Bagno, E., Lehavi, Y. (2019). Role of Teachers as Facilitators of the Interplay Physics and Mathematics. In: Pospiech, G., Michelini, M., Eylon, BS. (eds) Mathematics in Physics Education. Springer, Cham. https://doi.org/10.1007/978-3-030-04627-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04627-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04626-2

  • Online ISBN: 978-3-030-04627-9

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics