Skip to main content

Biology and Genetics of Breast Cancer

  • Chapter
  • First Online:
Breast Disease
  • 1136 Accesses

Abstract

Breast cancer is the most common cancer among women, and it has a complex genetic basis for susceptibility. Understanding the mechanisms of DNA alterations leading to carcinogenesis can provide crucial insights for resolving the development of malignant processes such as growth, invasion, and metastasis. This chapter reviews hereditary and somatic genetic alterations, epigenetic misregulations, and miRNA signatures associated with breast cancer. The chapter also emphasizes the molecular profiles of breast cancer and the critical signaling pathway alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McPherson K, Steel CM. Dixon JM. ABC of breast diseases. Breast cancer-epidemiology, risk factors, and genetics. BMJ. 2000;321(7261):624–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bydoun M, Marcato P, Dellaire G. Chapter 13 – Breast cancer genomics. In: Arceci GDNBJ, editor. Cancer genomics. Boston: Academic; 2014. p. 213–32.

    Chapter  Google Scholar 

  3. Gayther SA, Pharoah PD, Ponder BA. The genetics of inherited breast cancer. J Mammary Gland Biol Neoplasia. 1998;3(4):365–76.

    Article  CAS  PubMed  Google Scholar 

  4. Fackenthal JD, Olopade OI. Breast cancer risk associated with BRCA1 and BRCA2 in diverse populations. Nat Rev Cancer. 2007;7(12):937–48. https://doi.org/10.1038/nrc2054.

    Article  CAS  PubMed  Google Scholar 

  5. Nathanson KL, Wooster R, Weber BL. Breast cancer genetics: what we know and what we need. Nat Med. 2001;7(5):552–6. https://doi.org/10.1038/87876.

    Article  CAS  PubMed  Google Scholar 

  6. Lakhani SR, Gusterson BA, Jacquemier J, Sloane JP, Anderson TJ, van de Vijver MJ, et al. The pathology of familial breast cancer: histological features of cancers in families not attributable to mutations in BRCA1 or BRCA2. Clin Cancer Res. 2000;6(3):782–9.

    CAS  PubMed  Google Scholar 

  7. Li M, Chen Q, Yu X. Chemopreventive effects of ROS targeting in a murine model of brca1-deficient breast cancer. Cancer Res. 2017;77(2):448–58. https://doi.org/10.1158/0008-5472.CAN-16-2350.

    Article  CAS  PubMed  Google Scholar 

  8. Narod SA, Huzarski T, Gronwald J, Byrski T, Marczyk E, Cybulski C, et al. Predictors of survival for breast cancer patients with a BRCA1 mutation. Breast Cancer Res Treat. 2018;168(2):513–21. https://doi.org/10.1007/s10549-017-4605-x.

    Article  CAS  PubMed  Google Scholar 

  9. Melhem-Bertrandt A, Bojadzieva J, Ready KJ, Obeid E, Liu DD, Gutierrez-Barrera AM, et al. Early onset HER2-positive breast cancer is associated with germline TP53 mutations. Cancer. 2012;118(4):908–13. https://doi.org/10.1002/cncr.26377.

    Article  CAS  PubMed  Google Scholar 

  10. Hynes NE, Dey JH. PI3K inhibition overcomes trastuzumab resistance: blockade of ErbB2/ErbB3 is not always enough. Cancer Cell. 2009;15(5):353–5. https://doi.org/10.1016/j.ccr.2009.04.004.

    Article  CAS  PubMed  Google Scholar 

  11. Curigliano G. New drugs for breast cancer subtypes: targeting driver pathways to overcome resistance. Cancer Treat Rev. 2012;38(4):303–10. https://doi.org/10.1016/j.ctrv.2011.06.006.

    Article  CAS  PubMed  Google Scholar 

  12. Schon K, Tischkowitz M. Clinical implications of germline mutations in breast cancer: TP53. Breast Cancer Res Treat. 2018;167(2):417–23. https://doi.org/10.1007/s10549-017-4531-y.

    Article  CAS  PubMed  Google Scholar 

  13. Hirshfield KM, Rebbeck TR, Levine AJ. Germline mutations and polymorphisms in the origins of cancers in women. J Oncol. 2010;2010:297671. https://doi.org/10.1155/2010/297671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Slavin TP, Maxwell KN, Lilyquist J, Vijai J, Neuhausen SL, Hart SN, et al. The contribution of pathogenic variants in breast cancer susceptibility genes to familial breast cancer risk. NPJ Breast Cancer. 2017;3:22. https://doi.org/10.1038/s41523-017-0024-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jiao X, Aravidis C, Marikkannu R, Rantala J, Picelli S, Adamovic T, et al. PHIP – a novel candidate breast cancer susceptibility locus on 6q14.1. Oncotarget. 2017;8(61):102769–82. https://doi.org/10.18632/oncotarget.21800.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ortiz AB, Garcia D, Vicente Y, Palka M, Bellas C, Martin P. Prognostic significance of cyclin D1 protein expression and gene amplification in invasive breast carcinoma. PLoS One. 2017;12(11):e0188068. https://doi.org/10.1371/journal.pone.0188068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Giltnane JM, Hutchinson KE, Stricker TP, Formisano L, Young CD, Estrada MV et al. Genomic profiling of ER(+) breast cancers after short-term estrogen suppression reveals alterations associated with endocrine resistance. Sci Transl Med. 2017;9(402). https://doi.org/10.1126/scitranslmed.aai7993.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chan CHT, Munusamy P, Loke SY, Koh GL, Wong ESY, Law HY, et al. Identification of novel breast cancer risk loci. Cancer Res. 2017;77(19):5428–37. https://doi.org/10.1158/0008-5472.CAN-17-0992.

    Article  CAS  PubMed  Google Scholar 

  19. Kuo SH, Yang SY, You SL, Lien HC, Lin CH, Lin PH, et al. Polymorphisms of ESR1, UGT1A1, HCN1, MAP3K1 and CYP2B6 are associated with the prognosis of hormone receptor-positive early breast cancer. Oncotarget. 2017;8(13):20925–38. https://doi.org/10.18632/oncotarget.14995.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Habermann JK, Doering J, Hautaniemi S, Roblick UJ, Bundgen NK, Nicorici D, et al. The gene expression signature of genomic instability in breast cancer is an independent predictor of clinical outcome. Int j Cancer. 2009;124(7):1552–64. https://doi.org/10.1002/ijc.24017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Feeley KP, Bray AW, Westbrook DG, Johnson LW, Kesterson RA, Ballinger SW, et al. Mitochondrial genetics regulate breast cancer tumorigenicity and metastatic potential. Cancer Res. 2015;75(20):4429–36. https://doi.org/10.1158/0008-5472.CAN-15-0074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang Q, Liang Z, Gao Y, Teng M, Niu L. Differentially expressed mitochondrial genes in breast cancer cells: Potential new targets for anti-cancer therapies. Gene. 2017;596:45–52. https://doi.org/10.1016/j.gene.2016.10.005.

    Article  CAS  PubMed  Google Scholar 

  23. Mishra P, Tang W, Putluri V, Dorsey TH, Jin F, Wang F, et al. ADHFE1 is a breast cancer oncogene and induces metabolic reprogramming. J Clin Invest. 2018;128(1):323–40. https://doi.org/10.1172/JCI93815.

    Article  PubMed  Google Scholar 

  24. Yizhak K, Le Devedec SE, Rogkoti VM, Baenke F, de Boer VC, Frezza C, et al. A computational study of the Warburg effect identifies metabolic targets inhibiting cancer migration. Mol Syst Biol. 2014;10:744. https://doi.org/10.15252/msb.20134993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Davies G, Lobanova L, Dawicki W, Groot G, Gordon JR, Bowen M, et al. Metformin inhibits the development, and promotes the resensitization, of treatment-resistant breast cancer. PLoS One. 2017;12(12):e0187191. https://doi.org/10.1371/journal.pone.0187191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Athreya AP, Kalari KR, Cairns J, Gaglio AJ, Wills QF, Niu N, et al. Model-based unsupervised learning informs metformin-induced cell-migration inhibition through an AMPK-independent mechanism in breast cancer. Oncotarget. 2017;8(16):27199–215. https://doi.org/10.18632/oncotarget.16109.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 2003;349(21):2042–54. https://doi.org/10.1056/NEJMra023075.

    Article  CAS  PubMed  Google Scholar 

  28. Baylin SB, Jones PA. A decade of exploring the cancer epigenome – biological and translational implications. Nat Rev Cancer. 2011;11(10):726–34. https://doi.org/10.1038/nrc3130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Minning C, Mokhtar NM, Abdullah N, Muhammad R, Emran NA, Ali SA, et al. Exploring breast carcinogenesis through integrative genomics and epigenomics analyses. Int J Oncol. 2014;45(5):1959–68. https://doi.org/10.3892/ijo.2014.2625.

    Article  CAS  PubMed  Google Scholar 

  30. Yan PS, Shi H, Rahmatpanah F, Hsiau TH, Hsiau AH, Leu YW, et al. Differential distribution of DNA methylation within the RASSF1A CpG island in breast cancer. Cancer Res. 2003;63(19):6178–86.

    CAS  PubMed  Google Scholar 

  31. Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358(11):1148–59. https://doi.org/10.1056/NEJMra072067.

    Article  CAS  PubMed  Google Scholar 

  32. Lu DG, Ma YM, Zhu AJ, Han YW. An early biomarker and potential therapeutic target of RUNX 3 hypermethylation in breast cancer, a system review and meta-analysis. Oncotarget. 2017;8(13):22166–74. https://doi.org/10.18632/oncotarget.13125.

    Article  PubMed  Google Scholar 

  33. Martin-Sanchez E, Mendaza S, Ulazia-Garmendia A, Monreal-Santesteban I, Blanco-Luquin I, Cordoba A, et al. CHL1 hypermethylation as a potential biomarker of poor prognosis in breast cancer. Oncotarget. 2017;8(9):15789–801. https://doi.org/10.18632/oncotarget.15004.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Esteller M. Relevance of DNA methylation in the management of cancer. Lancet Oncol. 2003;4(6):351–8.

    Article  CAS  PubMed  Google Scholar 

  35. Toska E, Osmanbeyoglu HU, Castel P, Chan C, Hendrickson RC, Elkabets M, et al. PI3K pathway regulates ER-dependent transcription in breast cancer through the epigenetic regulator KMT2D. Science. 2017;355(6331):1324–30. https://doi.org/10.1126/science.aah6893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yu L, Liang Y, Cao X, Wang X, Gao H, Lin SY, et al. Identification of MYST3 as a novel epigenetic activator of ERalpha frequently amplified in breast cancer. Oncogene. 2017;36(20):2910–8. https://doi.org/10.1038/onc.2016.433.

    Article  CAS  PubMed  Google Scholar 

  37. Avigdor BE, Beierl K, Gocke CD, Zabransky DJ, Cravero K, Kyker-Snowman K, et al. Whole-exome sequencing of metaplastic breast carcinoma indicates monoclonality with associated ductal carcinoma component. Clin Cancer Res. 2017;23(16):4875–84. https://doi.org/10.1158/1078-0432.CCR-17-0108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cava C, Bertoli G, Castiglioni I. Integrating genetics and epigenetics in breast cancer: biological insights, experimental, computational methods and therapeutic potential. BMC Syst Biol. 2015;9:62. https://doi.org/10.1186/s12918-015-0211-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xiao B, Zhang W, Chen L, Hang J, Wang L, Zhang R, et al. Analysis of the miRNA-mRNA-lncRNA network in human estrogen receptor-positive and estrogen receptor-negative breast cancer based on TCGA data. Gene. 2018;658:28–35. https://doi.org/10.1016/j.gene.2018.03.011.

    Article  CAS  PubMed  Google Scholar 

  40. Avery-Kiejda KA, Mathe A, Scott RJ. Genome-wide miRNA, gene and methylation analysis of triple negative breast cancer to identify changes associated with lymph node metastases. Genom Data. 2017;14:1–4. https://doi.org/10.1016/j.gdata.2017.07.004.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ellis MJ, Ding L, Shen D, Luo J, Suman VJ, Wallis JW, et al. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature. 2012;486(7403):353–60. https://doi.org/10.1038/nature11143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Elston CW, Ellis IO, Pinder SE. Pathological prognostic factors in breast cancer. Crit Rev Oncol Hematol. 1999;31(3):209–23.

    Article  CAS  PubMed  Google Scholar 

  43. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70. https://doi.org/10.1038/nature11412.

    Article  CAS  Google Scholar 

  44. Dawson SJ, Rueda OM, Aparicio S, Caldas C. A new genome-driven integrated classification of breast cancer and its implications. EMBO J. 2013;32(5):617–28. https://doi.org/10.1038/emboj.2013.19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A. 2003;100(14):8418–23. https://doi.org/10.1073/pnas.0932692100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52. https://doi.org/10.1038/35021093.

    Article  CAS  PubMed  Google Scholar 

  47. Sandhu R, Parker JS, Jones WD, Livasy CA, Coleman WB. Microarray-based gene expression profiling for molecular classification of breast cancer and identification of new targets for therapy. Lab Med. 2010;41(6):364–72. https://doi.org/10.1309/LMLIK0VIE3CJK0WD.

    Article  Google Scholar 

  48. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010;12(5):R68. https://doi.org/10.1186/bcr2635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Prat A, Perou CM. Deconstructing the molecular portraits of breast cancer. Mol Oncol. 2011;5(1):5–23. https://doi.org/10.1016/j.molonc.2010.11.003.

    Article  CAS  PubMed  Google Scholar 

  50. Albain KS, Barlow WE, Shak S, Hortobagyi GN, Livingston RB, Yeh IT, et al. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol. 2010;11(1):55–65. https://doi.org/10.1016/S1470-2045(09)70314-6.

    Article  CAS  PubMed  Google Scholar 

  51. Kim HS, Umbricht CB, Illei PB, Cimino-Mathews A, Cho S, Chowdhury N, et al. Optimizing the use of gene expression profiling in early-stage breast cancer. J Clin Oncol. 2016;34(36):4390–7. https://doi.org/10.1200/JCO.2016.67.7195.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mook S, Schmidt MK, Viale G, Pruneri G, Eekhout I, Floore A, et al. The 70-gene prognosis-signature predicts disease outcome in breast cancer patients with 1-3 positive lymph nodes in an independent validation study. Breast Cancer Res Treat. 2009;116(2):295–302. https://doi.org/10.1007/s10549-008-0130-2.

    Article  CAS  PubMed  Google Scholar 

  53. Knauer M, Mook S, Rutgers EJ, Bender RA, Hauptmann M, van de Vijver MJ, et al. The predictive value of the 70-gene signature for adjuvant chemotherapy in early breast cancer. Breast Cancer Res Treat. 2010;120(3):655–61. https://doi.org/10.1007/s10549-010-0814-2.

    Article  CAS  PubMed  Google Scholar 

  54. Sanchez-Navarro I, Gamez-Pozo A, Pinto A, Hardisson D, Madero R, Lopez R, et al. An 8-gene qRT-PCR-based gene expression score that has prognostic value in early breast cancer. BMC Cancer. 2010;10:336. https://doi.org/10.1186/1471-2407-10-336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27(8):1160–7. https://doi.org/10.1200/JCO.2008.18.1370.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Duffy MJ, O’Donovan N, McDermott E, Crown J. Validated biomarkers: the key to precision treatment in patients with breast cancer. Breast. 2016;29:192–201. https://doi.org/10.1016/j.breast.2016.07.009.

    Article  PubMed  Google Scholar 

  57. Paik S, Tang G, Shak S, Kim C, Baker J, Kim W, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol. 2006;24(23):3726–34. https://doi.org/10.1200/JCO.2005.04.7985.

    Article  CAS  PubMed  Google Scholar 

  58. Gatza ML, Silva GO, Parker JS, Fan C, Perou CM. An integrated genomics approach identifies drivers of proliferation in luminal-subtype human breast cancer. Nat Genet. 2014;46(10):1051–9. https://doi.org/10.1038/ng.3073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sim SH, Bae CD, Kwon Y, Hwang HL, Poojan S, Hong HI, et al. CKAP2 (cytoskeleton-associated protein2) is a new prognostic marker in HER2-negative luminal type breast cancer. PLoS One. 2017;12(8):e0182107. https://doi.org/10.1371/journal.pone.0182107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gates LA, Gu G, Chen Y, Rohira AD, Lei JT, Hamilton RA, et al. Proteomic profiling identifies key coactivators utilized by mutant ERalpha proteins as potential new therapeutic targets. Oncogene. 2018; https://doi.org/10.1038/s41388-018-0284-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gelsomino L, Panza S, Giordano C, Barone I, Gu G, Spina E, et al. Mutations in the estrogen receptor alpha hormone binding domain promote stem cell phenotype through notch activation in breast cancer cell lines. Cancer Lett. 2018;428:12–20. https://doi.org/10.1016/j.canlet.2018.04.023.

    Article  CAS  PubMed  Google Scholar 

  62. Bahreini A, Li Z, Wang P, Levine KM, Tasdemir N, Cao L, et al. Mutation site and context dependent effects of ESR1 mutation in genome-edited breast cancer cell models. Breast Cancer Res. 2017;19(1):60. https://doi.org/10.1186/s13058-017-0851-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Holst F, Singer CF. ESR1-amplification-associated estrogen receptor alpha activity in breast cancer. Trends Endocrinol Metab. 2016;27(11):751–2. https://doi.org/10.1016/j.tem.2016.08.002.

    Article  CAS  PubMed  Google Scholar 

  64. Staaf J, Ringner M, Vallon-Christersson J, Jonsson G, Bendahl PO, Holm K, et al. Identification of subtypes in human epidermal growth factor receptor 2--positive breast cancer reveals a gene signature prognostic of outcome. J Clin Oncol. 2010;28(11):1813–20. https://doi.org/10.1200/JCO.2009.22.8775.

    Article  PubMed  Google Scholar 

  65. Khoury T, Kanehira K, Wang D, Ademuyiwa F, Mojica W, Cheney R, et al. Breast carcinoma with amplified HER2: a gene expression signature specific for trastuzumab resistance and poor prognosis. Mod Pathol. 2010;23(10):1364–78. https://doi.org/10.1038/modpathol.2010.125.

    Article  CAS  PubMed  Google Scholar 

  66. Arteaga CL, Engelman JA. ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell. 2014;25(3):282–303. https://doi.org/10.1016/j.ccr.2014.02.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Arribas J, Baselga J, Pedersen K, Parra-Palau JL. p95HER2 and breast cancer. Cancer Res. 2011;71(5):1515–9. https://doi.org/10.1158/0008-5472.CAN-10-3795.

    Article  CAS  PubMed  Google Scholar 

  68. Turner NC, Reis-Filho JS. Basal-like breast cancer and the BRCA1 phenotype. Oncogene. 2006;25(43):5846–53. https://doi.org/10.1038/sj.onc.1209876.

    Article  CAS  PubMed  Google Scholar 

  69. Yau C, Esserman L, Moore DH, Waldman F, Sninsky J, Benz CC. A multigene predictor of metastatic outcome in early stage hormone receptor-negative and triple-negative breast cancer. Breast Cancer Res. 2010;12(5):R85. https://doi.org/10.1186/bcr2753.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lee SJ, Lee J, Kim WW, Jung JH, Park HY, Park JY, et al. Del-1 expression as a potential biomarker in triple-negative early breast cancer. Oncology. 2018;94(4):243–56. https://doi.org/10.1159/000485658.

    Article  CAS  PubMed  Google Scholar 

  71. Shan L, Zhou X, Liu X, Wang Y, Su D, Hou Y, et al. FOXK2 elicits massive transcription repression and suppresses the hypoxic response and breast cancer carcinogenesis. Cancer Cell. 2016;30(5):708–22. https://doi.org/10.1016/j.ccell.2016.09.010.

    Article  CAS  PubMed  Google Scholar 

  72. Wang H, Schaefer T, Konantz M, Braun M, Varga Z, Paczulla AM, et al. Prominent oncogenic roles of EVI1 in breast carcinoma. Cancer Res. 2017;77(8):2148–60. https://doi.org/10.1158/0008-5472.CAN-16-0593.

    Article  CAS  PubMed  Google Scholar 

  73. Metzger E, Stepputtis SS, Strietz J, Preca BT, Urban S, Willmann D, et al. KDM4 inhibition targets breast cancer stem-like cells. Cancer Res. 2017;77(21):5900–12. https://doi.org/10.1158/0008-5472.CAN-17-1754.

    Article  CAS  PubMed  Google Scholar 

  74. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–67. https://doi.org/10.1172/JCI45014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature. 2012;486(7403):395–9. https://doi.org/10.1038/nature10933.

    Article  CAS  PubMed  Google Scholar 

  76. Seal MD, Chia SK. What is the difference between triple-negative and basal breast cancers? Cancer J. 2010;16(1):12–6. https://doi.org/10.1097/PPO.0b013e3181cf04be.

    Article  CAS  PubMed  Google Scholar 

  77. Vuong D, Simpson PT, Green B, Cummings MC, Lakhani SR. Molecular classification of breast cancer. Virchows Arch. 2014;465:1):1–14. https://doi.org/10.1007/s00428-014-1593-7.

    Article  CAS  PubMed  Google Scholar 

  78. Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J, et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst. 2006;98(4):262–72. https://doi.org/10.1093/jnci/djj052.

    Article  CAS  PubMed  Google Scholar 

  79. Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, et al. The landscape of cancer genes and mutational processes in breast cancer. Nature. 2012;486(7403):400–4. https://doi.org/10.1038/nature11017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bertucci F, Orsetti B, Negre V, Finetti P, Rouge C, Ahomadegbe JC, et al. Lobular and ductal carcinomas of the breast have distinct genomic and expression profiles. Oncogene. 2008;27(40):5359–72. https://doi.org/10.1038/onc.2008.158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang C, Machiraju R, Huang K. Breast cancer patient stratification using a molecular regularized consensus clustering method. Methods. 2014;67(3):304–12. https://doi.org/10.1016/j.ymeth.2014.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Suaifan G, Jaber D, Shehadeh MB, Zourob M. Proteinases as biomarkers in breast cancer prognosis and diagnosis. Mini Rev Med Chem. 2017;17(7):583–92. https://doi.org/10.2174/1389557516666160607235802.

    Article  CAS  PubMed  Google Scholar 

  83. Guerin M, Goncalves A, Toiron Y, Baudelet E, Audebert S, Boyer JB, et al. How may targeted proteomics complement genomic data in breast cancer? Expert Rev Proteomics. 2017;14(1):43–54. https://doi.org/10.1080/14789450.2017.1256776.

    Article  CAS  PubMed  Google Scholar 

  84. Ziogas DE, Spiliotis J, Lykoudis EG, Zografos GC, Roukos DH. Intratumor and circulating clonal heterogeneity shape the basis of precision breast cancer therapy. Future Oncol. 2017;13(2):113–6. https://doi.org/10.2217/fon-2016-0307.

    Article  CAS  PubMed  Google Scholar 

  85. Bai L, Yang HH, Hu Y, Shukla A, Ha NH, Doran A, et al. An integrated genome-wide systems genetics screen for breast cancer metastasis susceptibility genes. PLoS Genet. 2016;12(4):e1005989. https://doi.org/10.1371/journal.pgen.1005989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Miller SM, Goulet DR, Johnson GL. Targeting the breast cancer kinome. J Cell Physiol. 2017;232(1):53–60. https://doi.org/10.1002/jcp.25427.

    Article  CAS  PubMed  Google Scholar 

  87. Wang W, Xu ZZ, Costanzo M, Boone C, Lange CA, Myers CL. Pathway-based discovery of genetic interactions in breast cancer. PLoS Genet. 2017;13(9):e1006973. https://doi.org/10.1371/journal.pgen.1006973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gabasova E, Reid J, Wernisch L. Clusternomics: integrative context-dependent clustering for heterogeneous datasets. PLoS Comput Biol. 2017;13(10):e1005781. https://doi.org/10.1371/journal.pcbi.1005781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Khakpour G, Noruzinia M, Izadi P, Karami F, Ahmadvand M, Heshmat R, et al. Methylomics of breast cancer: seeking epimarkers in peripheral blood of young subjects. Tumour Biol. 2017;39(3):1010428317695040. https://doi.org/10.1177/1010428317695040.

    Article  PubMed  Google Scholar 

  90. Eddy JA, Hood L, Price ND, Geman D. Identifying tightly regulated and variably expressed networks by Differential Rank Conservation (DIRAC). PLoS Comput Biol. 2010;6(5):e1000792. https://doi.org/10.1371/journal.pcbi.1000792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Klein MI, Stern DF, Zhao H. GRAPE: a pathway template method to characterize tissue-specific functionality from gene expression profiles. BMC Bioinformatics. 2017;18(1):317. https://doi.org/10.1186/s12859-017-1711-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  93. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8. https://doi.org/10.1038/nature03702.

    Article  CAS  PubMed  Google Scholar 

  94. Evans-Knowell A, LaRue AC, Findlay VJ. MicroRNAs and their impact on breast cancer, the tumor microenvironment, and disparities. Adv Cancer Res. 2017;133:51–76. https://doi.org/10.1016/bs.acr.2016.08.003.

    Article  CAS  PubMed  Google Scholar 

  95. Andorfer CA, Necela BM, Thompson EA, Perez EA. MicroRNA signatures: clinical biomarkers for the diagnosis and treatment of breast cancer. Trends Mol Med. 2011;17(6):313–9. https://doi.org/10.1016/j.molmed.2011.01.006.

    Article  CAS  PubMed  Google Scholar 

  96. Nygren MK, Tekle C, Ingebrigtsen VA, Makela R, Krohn M, Aure MR, et al. Identifying microRNAs regulating B7-H3 in breast cancer: the clinical impact of microRNA-29c. Br J Cancer. 2014;110(8):2072–80. https://doi.org/10.1038/bjc.2014.113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gebeshuber CA, Martinez J. miR-100 suppresses IGF2 and inhibits breast tumorigenesis by interfering with proliferation and survival signaling. Oncogene. 2013;32(27):3306–10. https://doi.org/10.1038/onc.2012.372.

    Article  CAS  PubMed  Google Scholar 

  98. Lobert S, Jefferson B, Morris K. Regulation of beta-tubulin isotypes by micro-RNA 100 in MCF7 breast cancer cells. Cytoskeleton. 2011;68(6):355–62. https://doi.org/10.1002/cm.20517.

    Article  CAS  PubMed  Google Scholar 

  99. Shen L, Li J, Xu L, Ma J, Li H, Xiao X, et al. miR-497 induces apoptosis of breast cancer cells by targeting Bcl-w. Exp Ther Med. 2012;3(3):475–80. https://doi.org/10.3892/etm.2011.428.

    Article  CAS  PubMed  Google Scholar 

  100. Li D, Zhao Y, Liu C, Chen X, Qi Y, Jiang Y, et al. Analysis of MiR-195 and MiR-497 expression, regulation and role in breast cancer. Clin Cancer Res. 2011;17(7):1722–30. https://doi.org/10.1158/1078-0432.CCR-10-1800.

    Article  CAS  PubMed  Google Scholar 

  101. Nagpal N, Ahmad HM, Molparia B, Kulshreshtha R. MicroRNA-191, an estrogen-responsive microRNA, functions as an oncogenic regulator in human breast cancer. Carcinogenesis. 2013;34(8):1889–99. https://doi.org/10.1093/carcin/bgt107.

    Article  CAS  PubMed  Google Scholar 

  102. Ding X, Park SI, McCauley LK, Wang CY. Signaling between transforming growth factor beta (TGF-beta) and transcription factor SNAI2 represses expression of microRNA miR-203 to promote epithelial-mesenchymal transition and tumor metastasis. J Biol Chem. 2013;288(15):10241–53. https://doi.org/10.1074/jbc.M112.443655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang Z, Zhang B, Li W, Fu L, Fu L, Zhu Z, et al. Epigenetic silencing of miR-203 upregulates SNAI2 and contributes to the invasiveness of malignant breast cancer cells. Genes Cancer. 2011;2(8):782–91. https://doi.org/10.1177/1947601911429743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Shaker O, Maher M, Nassar Y, Morcos G, Gad Z. Role of microRNAs -29b-2, -155, -197 and -205 as diagnostic biomarkers in serum of breast cancer females. Gene. 2015;560(1):77–82. https://doi.org/10.1016/j.gene.2015.01.062.

    Article  CAS  PubMed  Google Scholar 

  105. Zhao H, Wilkie T, Deol Y, Sneh A, Ganju A, Basree M, et al. miR-29b defines the pro-/anti-proliferative effects of S100A7 in breast cancer. Mol Cancer. 2015;14(1):11. https://doi.org/10.1186/s12943-014-0275-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chang YY, Kuo WH, Hung JH, Lee CY, Lee YH, Chang YC, et al. Deregulated microRNAs in triple-negative breast cancer revealed by deep sequencing. Mol Cancer. 2015;14:36. https://doi.org/10.1186/s12943-015-0301-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Neel JC, Lebrun JJ. Activin and TGFbeta regulate expression of the microRNA-181 family to promote cell migration and invasion in breast cancer cells. Cell Signal. 2013;25(7):1556–66. https://doi.org/10.1016/j.cellsig.2013.03.013.

    Article  CAS  PubMed  Google Scholar 

  108. Ferracin M, Bassi C, Pedriali M, Pagotto S, D’Abundo L, Zagatti B, et al. miR-125b targets erythropoietin and its receptor and their expression correlates with metastatic potential and ERBB2/HER2 expression. Mol Cancer. 2013;12(1):130. https://doi.org/10.1186/1476-4598-12-130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Feliciano A, Castellvi J, Artero-Castro A, Leal JA, Romagosa C, Hernandez-Losa J, et al. miR-125b acts as a tumor suppressor in breast tumorigenesis via its novel direct targets ENPEP, CK2-alpha, CCNJ, and MEGF9. PLoS One. 2013;8(10):e76247. https://doi.org/10.1371/journal.pone.0076247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang B, Zou A, Ma L, Chen X, Wang L, Zeng X, et al. miR-455 inhibits breast cancer cell proliferation through targeting CDK14. Eur J Pharmacol. 2017;807:138–43. https://doi.org/10.1016/j.ejphar.2017.03.016.

    Article  CAS  PubMed  Google Scholar 

  111. Xiang Y, Liao XH, Yu CX, Yao A, Qin H, Li JP, et al. MiR-93-5p inhibits the EMT of breast cancer cells via targeting MKL-1 and STAT3. Exp Cell Res. 2017;357(1):135–44. https://doi.org/10.1016/j.yexcr.2017.05.007.

    Article  CAS  PubMed  Google Scholar 

  112. Roscigno G, Puoti I, Giordano I, Donnarumma E, Russo V, Affinito A, et al. MiR-24 induces chemotherapy resistance and hypoxic advantage in breast cancer. Oncotarget. 2017;8(12):19507–21. https://doi.org/10.18632/oncotarget.14470.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Kong LY, Xue M, Zhang QC, Su CF. In vivo and in vitro effects of microRNA-27a on proliferation, migration and invasion of breast cancer cells through targeting of SFRP1 gene via Wnt/beta-catenin signaling pathway. Oncotarget. 2017;8(9):15507–19. https://doi.org/10.18632/oncotarget.14662.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Imani S, Wei C, Cheng J, Khan MA, Fu S, Yang L, et al. MicroRNA-34a targets epithelial to mesenchymal transition-inducing transcription factors (EMT-TFs) and inhibits breast cancer cell migration and invasion. Oncotarget. 2017;8(13):21362–79. https://doi.org/10.18632/oncotarget.15214.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Imani S, Zhang X, Hosseinifard H, Fu S, Fu J. The diagnostic role of microRNA-34a in breast cancer: a systematic review and meta-analysis. Oncotarget. 2017;8(14):23177–87. https://doi.org/10.18632/oncotarget.15520.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Ying X, Sun Y, He P. MicroRNA-137 inhibits BMP7 to enhance the epithelial-mesenchymal transition of breast cancer cells. Oncotarget. 2017;8(11):18348–58. https://doi.org/10.18632/oncotarget.15442.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Gohring AR, Reuter S, Clement JH, Cheng X, Theobald J, Wolfl S, et al. Human microRNA-299-3p decreases invasive behavior of cancer cells by downregulation of Oct4 expression and causes apoptosis. PLoS One. 2017;12(4):e0174912. https://doi.org/10.1371/journal.pone.0174912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhou W, Song F, Wu Q, Liu R, Wang L, Liu C, et al. miR-217 inhibits triple-negative breast cancer cell growth, migration, and invasion through targeting KLF5. PLoS One. 2017;12(4):e0176395. https://doi.org/10.1371/journal.pone.0176395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Xie F, Hosany S, Zhong S, Jiang Y, Zhang F, Lin L, et al. MicroRNA-193a inhibits breast cancer proliferation and metastasis by downregulating WT1. PLoS One. 2017;12(10):e0185565. https://doi.org/10.1371/journal.pone.0185565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Jiang CF, Shi ZM, Li DM, Qian YC, Ren Y, Bai XM, et al. Estrogen-induced miR-196a elevation promotes tumor growth and metastasis via targeting SPRED1 in breast cancer. Mol Cancer. 2018;17(1):83. https://doi.org/10.1186/s12943-018-0830-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhang J, Yang J, Zhang X, Xu J, Sun Y, Zhang P. MicroRNA-10b expression in breast cancer and its clinical association. PLoS One. 2018;13(2):e0192509. https://doi.org/10.1371/journal.pone.0192509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kung JT, Colognori D, Lee JT. Long noncoding RNAs: past, present, and future. Genetics. 2013;193(3):651–69. https://doi.org/10.1534/genetics.112.146704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Singla H, Ludhiadch A, Kaur RP, Chander H, Kumar V, Munshi A. Recent advances in HER2 positive breast cancer epigenetics: Susceptibility and therapeutic strategies. Eur J Med Chem. 2017;142:316–27. https://doi.org/10.1016/j.ejmech.2017.07.075.

    Article  CAS  PubMed  Google Scholar 

  124. Muluhngwi P, Klinge CM. Identification of miRNAs as biomarkers for acquired endocrine resistance in breast cancer. Mol Cell Endocrinol. 2017;456:76–86. https://doi.org/10.1016/j.mce.2017.02.004.

    Article  CAS  PubMed  Google Scholar 

  125. Zhang K, Wang YW, Wang YY, Song Y, Zhu J, Si PC, et al. Identification of microRNA biomarkers in the blood of breast cancer patients based on microRNA profiling. Gene. 2017;619:10–20. https://doi.org/10.1016/j.gene.2017.03.038.

    Article  CAS  PubMed  Google Scholar 

  126. Nagini S. Breast cancer: current molecular therapeutic targets and new players. Anti Cancer Agents Med Chem. 2017;17(2):152–63.

    Article  CAS  Google Scholar 

  127. Huang NS, Chi YY, Xue JY, Liu MY, Huang S, Mo M, et al. Long non-coding RNA metastasis associated in lung adenocarcinoma transcript 1 (MALAT1) interacts with estrogen receptor and predicted poor survival in breast cancer. Oncotarget. 2016;7(25):37957–65. https://doi.org/10.18632/oncotarget.9364.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Wang Z, Katsaros D, Biglia N, Shen Y, Fu Y, Loo LWM, et al. High expression of long non-coding RNA MALAT1 in breast cancer is associated with poor relapse-free survival. Breast Cancer Res Treat. 2018; https://doi.org/10.1007/s10549-018-4839-2.

    Article  CAS  PubMed  Google Scholar 

  129. Zhang CY, Yu MS, Li X, Zhang Z, Han CR, Yan B. Overexpression of long non-coding RNA MEG3 suppresses breast cancer cell proliferation, invasion, and angiogenesis through AKT pathway. Tumour Biol. 2017;39(6):1010428317701311. https://doi.org/10.1177/1010428317701311.

    Article  PubMed  Google Scholar 

  130. Li Z, Dong M, Fan D, Hou P, Li H, Liu L, et al. LncRNA ANCR down-regulation promotes TGF-beta-induced EMT and metastasis in breast cancer. Oncotarget. 2017;8(40):67329–43. https://doi.org/10.18632/oncotarget.18622.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Yager JD, Davidson NE. Estrogen carcinogenesis in breast cancer. N Engl J Med. 2006;354(3):270–82. https://doi.org/10.1056/NEJMra050776.

    Article  CAS  PubMed  Google Scholar 

  132. Basile D, Cinausero M, Iacono D, Pelizzari G, Bonotto M, Vitale MG, et al. Androgen receptor in estrogen receptor positive breast cancer: beyond expression. Cancer Treat Rev. 2017;61:15–22. https://doi.org/10.1016/j.ctrv.2017.09.006.

    Article  CAS  PubMed  Google Scholar 

  133. Feng J, Li L, Zhang N, Liu J, Zhang L, Gao H, et al. Androgen and AR contribute to breast cancer development and metastasis: an insight of mechanisms. Oncogene. 2017;36(20):2775–90. https://doi.org/10.1038/onc.2016.432.

    Article  CAS  PubMed  Google Scholar 

  134. Shee K, Yang W, Hinds JW, Hampsch RA, Varn FS, Traphagen NA, et al. Therapeutically targeting tumor microenvironment-mediated drug resistance in estrogen receptor-positive breast cancer. J Exp Med. 2018;215(3):895–910. https://doi.org/10.1084/jem.20171818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Christopoulos PF, Vlachogiannis NI, Vogkou CT, Koutsilieris M. The role of the androgen receptor signaling in breast malignancies. Anticancer Res. 2017;37(12):6533–40. https://doi.org/10.21873/anticanres.12109.

    Article  CAS  PubMed  Google Scholar 

  136. Ekoue DN, Unni N, Raj GV. A new class of agents for estrogen-receptor-positive breast cancer. Expert Rev Clin Pharmacol. 2018;11(4):325–8. https://doi.org/10.1080/17512433.2018.1439736.

    Article  CAS  PubMed  Google Scholar 

  137. Lindsten T, Hedbrant A, Ramberg A, Wijkander J, Solterbeck A, Eriksson M, et al. Effect of macrophages on breast cancer cell proliferation, and on expression of hormone receptors, uPAR and HER-2. Int J Oncol. 2017;51(1):104–14. https://doi.org/10.3892/ijo.2017.3996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Fu X, Jeselsohn R, Pereira R, Hollingsworth EF, Creighton CJ, Li F, et al. FOXA1 overexpression mediates endocrine resistance by altering the ER transcriptome and IL-8 expression in ER-positive breast cancer. Proc Natl Acad Sci U S A. 2016;113(43):E6600–E9. https://doi.org/10.1073/pnas.1612835113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Bado I, Pham E, Soibam B, Nikolos F, Gustafsson JA, Thomas C. ERbeta alters the chemosensitivity of luminal breast cancer cells by regulating p53 function. Oncotarget. 2018;9(32):22509–22. https://doi.org/10.18632/oncotarget.25147.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Madhu Krishna B, Chaudhary S, Mishra DR, Naik SK, Suklabaidya S, Adhya AK, et al. Estrogen receptor alpha dependent regulation of estrogen related receptor beta and its role in cell cycle in breast cancer. BMC Cancer. 2018;18(1):607. https://doi.org/10.1186/s12885-018-4528-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zhao L, Huang S, Mei S, Yang Z, Xu L, Zhou N, et al. Pharmacological activation of estrogen receptor beta augments innate immunity to suppress cancer metastasis. Proc Natl Acad Sci U S A. 2018;115(16):E3673–E81. https://doi.org/10.1073/pnas.1803291115.

    CAS  Google Scholar 

  142. Lykkesfeldt AE, Iversen BR, Jensen MB, Ejlertsen B, Giobbie-Hurder A, Reiter BE, et al. Aurora kinase A as a possible marker for endocrine resistance in early estrogen receptor positive breast cancer. Acta Oncol. 2018;57(1):67–73. https://doi.org/10.1080/0284186X.2017.1404126.

    Article  CAS  PubMed  Google Scholar 

  143. Keegan NM, Gleeson JP, Hennessy BT, Morris PG. PI3K inhibition to overcome endocrine resistance in breast cancer. Expert Opin Investig Drugs. 2018;27(1):1–15. https://doi.org/10.1080/13543784.2018.1417384.

    Article  CAS  PubMed  Google Scholar 

  144. Choi HJ, Joo HS, Won HY, Min KW, Kim HY, Son T et al. Role of RBP2-Induced ER and IGF1R-ErbB signaling in tamoxifen resistance in breast cancer. J Natl Cancer Inst. 2018;110(4). https://doi.org/10.1093/jnci/djx207.

    Article  Google Scholar 

  145. Thaler S, Schmidt M, Robetawag S, Thiede G, Schad A, Sleeman JP. Proteasome inhibitors prevent bi-directional HER2/estrogen-receptor cross-talk leading to cell death in endocrine and lapatinib-resistant HER2+/ER+ breast cancer cells. Oncotarget. 2017;8(42):72281–301. https://doi.org/10.18632/oncotarget.20261.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature. 2001;411(6835):355–65. https://doi.org/10.1038/35077225.

    Article  CAS  PubMed  Google Scholar 

  147. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2000;103(2):211–25.

    Article  CAS  PubMed  Google Scholar 

  148. Hubbard SR, Miller WT. Receptor tyrosine kinases: mechanisms of activation and signaling. Curr Opin Cell Biol. 2007;19(2):117–23. https://doi.org/10.1016/j.ceb.2007.02.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Yarden Y, Pines G. The ERBB network: at last, cancer therapy meets systems biology. Nat Rev Cancer. 2012;12(8):553–63. https://doi.org/10.1038/nrc3309.

    Article  CAS  PubMed  Google Scholar 

  150. Eccles SA. The epidermal growth factor receptor/Erb-B/HER family in normal and malignant breast biology. Int J Dev Biol. 2011;55(7-9):685–96. https://doi.org/10.1387/ijdb.113396se.

    Article  PubMed  Google Scholar 

  151. Gala K, Chandarlapaty S. Molecular pathways: HER3 targeted therapy. Clin Cancer Res. 2014;20(6):1410–6. https://doi.org/10.1158/1078-0432.CCR-13-1549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Amin DN, Campbell MR, Moasser MM. The role of HER3, the unpretentious member of the HER family, in cancer biology and cancer therapeutics. Semin Cell Dev Biol. 2010;21(9):944–50. https://doi.org/10.1016/j.semcdb.2010.08.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Roskoski R Jr. The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol Res. 2014;79:34–74. https://doi.org/10.1016/j.phrs.2013.11.002.

    Article  CAS  PubMed  Google Scholar 

  154. Jaiswal BS, Kljavin NM, Stawiski EW, Chan E, Parikh C, Durinck S, et al. Oncogenic ERBB3 mutations in human cancers. Cancer Cell. 2013;23(5):603–17. https://doi.org/10.1016/j.ccr.2013.04.012.

    Article  CAS  PubMed  Google Scholar 

  155. Veeraraghavan J, De Angelis C, Reis-Filho JS, Pascual T, Prat A, Rimawi MF, et al. De-escalation of treatment in HER2-positive breast cancer: determinants of response and mechanisms of resistance. Breast. 2017;34(Suppl 1):S19–26. https://doi.org/10.1016/j.breast.2017.06.022.

    Article  PubMed  Google Scholar 

  156. Carnero A. The PKB/AKT pathway in cancer. Curr Pharm Des. 2010;16(1):34–44.

    Article  CAS  PubMed  Google Scholar 

  157. Saal LH, Holm K, Maurer M, Memeo L, Su T, Wang X, et al. PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res. 2005;65(7):2554–9. https://doi.org/10.1158/0008-5472-CAN-04-3913.

    Article  CAS  PubMed  Google Scholar 

  158. Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer. 2015;15(1):7–24. https://doi.org/10.1038/nrc3860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem. 1995;270(3):1230–7.

    Article  CAS  PubMed  Google Scholar 

  160. Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148(3):399–408. https://doi.org/10.1016/j.cell.2012.01.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Yamamoto Y, Ibusuki M, Okumura Y, Kawasoe T, Kai K, Iyama K, et al. Hypoxia-inducible factor 1alpha is closely linked to an aggressive phenotype in breast cancer. Breast Cancer Res Treat. 2008;110(3):465–75. https://doi.org/10.1007/s10549-007-9742-1.

    Article  CAS  PubMed  Google Scholar 

  162. Helczynska K, Larsson AM, Holmquist Mengelbier L, Bridges E, Fredlund E, Borgquist S, et al. Hypoxia-inducible factor-2alpha correlates to distant recurrence and poor outcome in invasive breast cancer. Cancer Res. 2008;68(22):9212–20. https://doi.org/10.1158/0008-5472.CAN-08-1135.

    Article  CAS  PubMed  Google Scholar 

  163. Zhang H, Wong CC, Wei H, Gilkes DM, Korangath P, Chaturvedi P, et al. HIF-1-dependent expression of angiopoietin-like 4 and L1CAM mediates vascular metastasis of hypoxic breast cancer cells to the lungs. Oncogene. 2012;31(14):1757–70. https://doi.org/10.1038/onc.2011.365.

    Article  CAS  PubMed  Google Scholar 

  164. Erler JT, Bennewith KL, Nicolau M, Dornhofer N, Kong C, Le QT, et al. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature. 2006;440(7088):1222–6. https://doi.org/10.1038/nature04695.

    Article  CAS  PubMed  Google Scholar 

  165. Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A, et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell. 2009;15(1):35–44. https://doi.org/10.1016/j.ccr.2008.11.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Perryman L, Erler JT. Lysyl oxidase in cancer research. Future Oncol. 2014;10(9):1709–17. https://doi.org/10.2217/fon.14.39.

    Article  CAS  PubMed  Google Scholar 

  167. Barker HE, Cox TR, Erler JT. The rationale for targeting the LOX family in cancer. Nat Rev Cancer. 2012;12(8):540–52. https://doi.org/10.1038/nrc3319.

    Article  CAS  PubMed  Google Scholar 

  168. Bialesova L, Xu L, Gustafsson JA, Haldosen LA, Zhao C, Dahlman-Wright K. Estrogen receptor beta2 induces proliferation and invasiveness of triple negative breast cancer cells: association with regulation of PHD3 and HIF-1alpha. Oncotarget. 2017;8(44):76622–33. https://doi.org/10.18632/oncotarget.20635.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Louie MC, Sevigny MB. Steroid hormone receptors as prognostic markers in breast cancer. Am J Cancer Res. 2017;7(8):1617–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Rausch LK, Netzer NC, Hoegel J, Pramsohler S. The linkage between breast cancer, hypoxia, and adipose tissue. Front Oncol. 2017;7:211. https://doi.org/10.3389/fonc.2017.00211.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol. 2002;20(21):4368–80. https://doi.org/10.1200/JCO.2002.10.088.

    Article  CAS  PubMed  Google Scholar 

  172. Sitohy B, Nagy JA, Dvorak HF. Anti-VEGF/VEGFR therapy for cancer: reassessing the target. Cancer Res. 2012;72(8):1909–14. https://doi.org/10.1158/0008-5472.CAN-11-3406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Tredan O, Lacroix-Triki M, Guiu S, Mouret-Reynier MA, Barriere J, Bidard FC, et al. Angiogenesis and tumor microenvironment: bevacizumab in the breast cancer model. Target Oncol. 2015;10(2):189–98. https://doi.org/10.1007/s11523-014-0334-9.

    Article  PubMed  Google Scholar 

  174. Ribeiro-Silva A, Ribeiro do Vale F, Zucoloto S. Vascular endothelial growth factor expression in the basal subtype of breast carcinoma. Am J Clin Pathol. 2006;125(4):512–8. https://doi.org/10.1309/D744-C4NM-15J3-B00D.

    Article  CAS  PubMed  Google Scholar 

  175. Linderholm BK, Hellborg H, Johansson U, Elmberger G, Skoog L, Lehtio J, et al. Significantly higher levels of vascular endothelial growth factor (VEGF) and shorter survival times for patients with primary operable triple-negative breast cancer. Ann Oncol. 2009;20(10):1639–46. https://doi.org/10.1093/annonc/mdp062.

    Article  CAS  PubMed  Google Scholar 

  176. Brechbuhl HM, Finlay-Schultz J, Yamamoto TM, Gillen AE, Cittelly DM, Tan AC, et al. Fibroblast subtypes regulate responsiveness of luminal breast cancer to estrogen. Clin Cancer Res. 2017;23(7):1710–21. https://doi.org/10.1158/1078-0432.CCR-15-2851.

    Article  CAS  PubMed  Google Scholar 

  177. Weitzenfeld P, Meshel T, Ben-Baruch A. Microenvironmental networks promote tumor heterogeneity and enrich for metastatic cancer stem-like cells in Luminal-A breast tumor cells. Oncotarget. 2016;7(49):81123–43. https://doi.org/10.18632/oncotarget.13213.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Rothenberger NJ, Somasundaram A, Stabile LP. The role of the estrogen pathway in the tumor microenvironment. Int J Mol Sci. 2018;19(2). https://doi.org/10.3390/ijms19020611.

    Article  PubMed Central  Google Scholar 

  179. Katz H, Alsharedi M. Immunotherapy in triple-negative breast cancer. Med Oncol. 2017;35(1):13. https://doi.org/10.1007/s12032-017-1071-6.

    Article  CAS  PubMed  Google Scholar 

  180. Li Z, Qiu Y, Lu W, Jiang Y, Wang J. Immunotherapeutic interventions of triple negative breast cancer. J Transl Med. 2018;16(1):147. https://doi.org/10.1186/s12967-018-1514-7.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Huang H, Li C, Ren G. Clinical significance of the B7-H4 as a novel prognostic marker in breast cancer. Gene. 2017;623:24–8. https://doi.org/10.1016/j.gene.2017.04.003.

    Article  CAS  PubMed  Google Scholar 

  182. Podojil JR, Miller SD. Potential targeting of B7-H4 for the treatment of cancer. Immunol Rev. 2017;276(1):40–51. https://doi.org/10.1111/imr.12530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Safonov A, Jiang T, Bianchini G, Gyorffy B, Karn T, Hatzis C, et al. Immune gene expression is associated with genomic aberrations in breast cancer. Cancer Res. 2017;77(12):3317–24. https://doi.org/10.1158/0008-5472.CAN-16-3478.

    Article  CAS  PubMed  Google Scholar 

  184. Denkert C, von Minckwitz G, Darb-Esfahani S, Lederer B, Heppner BI, Weber KE, et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol. 2018;19(1):40–50. https://doi.org/10.1016/S1470-2045(17)30904-X.

    Article  PubMed  Google Scholar 

  185. Ravelli A, Roviello G, Cretella D, Cavazzoni A, Biondi A, Cappelletti MR, et al. Tumor-infiltrating lymphocytes and breast cancer: beyond the prognostic and predictive utility. Tumour Biol. 2017;39(4):1010428317695023. https://doi.org/10.1177/1010428317695023.

    Article  PubMed  Google Scholar 

  186. Cherdyntseva NV, Litviakov NV, Denisov EV, Gervas PA, Cherdyntsev ES. Circulating tumor cells in breast cancer: functional heterogeneity, pathogenetic and clinical aspects. Exp Oncol. 2017;39(1):2–11.

    Article  CAS  PubMed  Google Scholar 

  187. Zou J, Wang E. eTumorType, an algorithm of discriminating cancer types for circulating tumor cells or cell-free DNAs in blood. Genomics Proteomics Bioinformatics. 2017;15(2):130–40. https://doi.org/10.1016/j.gpb.2017.01.004.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Page K, Guttery DS, Fernandez-Garcia D, Hills A, Hastings RK, Luo J, et al. Next generation sequencing of circulating cell-free DNA for evaluating mutations and gene amplification in metastatic breast cancer. Clin Chem. 2017;63(2):532–41. https://doi.org/10.1373/clinchem.2016.261834.

    Article  CAS  PubMed  Google Scholar 

  189. Jakabova A, Bielcikova Z, Pospisilova E, Matkowski R, Szynglarewicz B, Staszek-Szewczyk U, et al. Molecular characterization and heterogeneity of circulating tumor cells in breast cancer. Breast Cancer Res Treat. 2017;166(3):695–700. https://doi.org/10.1007/s10549-017-4452-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Agelaki S, Dragolia M, Markonanolaki H, Alkahtani S, Stournaras C, Georgoulias V, et al. Phenotypic characterization of circulating tumor cells in triple negative breast cancer patients. Oncotarget. 2017;8(3):5309–22. https://doi.org/10.18632/oncotarget.14144.

    Article  PubMed  Google Scholar 

  191. Bredemeier M, Edimiris P, Mach P, Kubista M, Sjoback R, Rohlova E, et al. Gene expression signatures in circulating tumor cells correlate with response to therapy in metastatic breast cancer. Clin Chem. 2017;63(10):1585–93. https://doi.org/10.1373/clinchem.2016.269605.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lale Dogan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gedik, M.E., Dogan, A.L. (2019). Biology and Genetics of Breast Cancer. In: Aydiner, A., Igci, A., Soran, A. (eds) Breast Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-04606-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04606-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04605-7

  • Online ISBN: 978-3-030-04606-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics